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Abstract: With the rapid development of quantum computing technology, traditional collaborative signature schemes based
on RSA and elliptic curve cryptography face significant security challenges. This paper proposes a lattice-based certificateless
collaborative signature scheme (L-CCS) to address the security and efficiency requirements of multi-party collaboration in in-
telligent computing and network systems. By leveraging lattice problems such as the Small Integer Solution and Learning With
Errors, our scheme ensures post-quantum security. The L-CCS eliminates the need for a trusted Key Generation Center and
a dedicated aggregator, enhancing decentralization and system robustness. Our construction achieves existential unforgeabil-
ity under adaptive chosen-message attacks in the random oracle model. Furthermore, we provide a practical implementation
optimized for large-scale data sharing (LSDS), demonstrating sublinear scalability in signature size and computation time.
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1 Introduction

Collaborative signature schemes enable distributed autho-
rization of digital messages while preserving individual ac-
countability, which is critical for emerging applications in
intelligent computing and network systems such as cloud-
based healthcare systems, federated governance platforms,
and loT-enabled monitoring. Traditional collaborative signa-
ture frameworks built on RSA or elliptic curve cryptography
(ECC) face fundamental limitations in post-quantum secu-
rity (PQS) landscapes. Shor’s algorithm[1] threatens to un-
dermine these classical cryptographic primitives, rendering
decades of encrypted data vulnerable to quantum adversaries.
Recent advancements in post-quantum cryptography have ex-
plored hash-based[2, 3] and code-based[4, 5] schemes, yet
these approaches often suffer from impractical signature sizes
or lack native support for collaborative workflows.
Lattice-based cryptography has emerged as a promising
foundation for quantum-resistant collaborative signatures. Its
security relies on the hardness of lattice problems such as
the Small Integer Solution (SIS) and Learning With Errors
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(LWE)[6], which remain intractable even against quantum
adversaries. Recent works have demonstrated the feasibil-
ity of lattice-based aggregate signatures[7, 8], yet these
constructions often inherit limitations from their classical
counterparts. For instance, existing lattice-based collabora-
tive schemes either require rigid signing orders[9], impose
excessive computational overhead on resource-constrained
devices[10], or depend on trusted third parties for key
issuance[11]. In particular, the need for a Key Generation
Center (KGC) and a dedicated aggregator, as seen in the ap-
proach proposed by Ma et al.[12], introduces potential points
of failure and centralization risks.

Certificateless cryptography offers a compelling idea to
the key escrow problem inherent in identity-based systems.
By combining a KGC-issued partial key with a user-generated
secret, certificateless schemes eliminate the need for cer-
tificates while preventing any single entity from forging
signatures. However, existing certificateless collaborative sig-
natures predominantly rely on bilinear pairings[13] or mod-
ular exponentiation[14], which are vulnerable to quantum
attacks. To the best of our knowledge, no prior work has
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Table 1: Comparison of L-CCS with Existing Schemes

Scheme PQS Certificateless LSDS Lightweight Sign
Boneh et al.[13],Lindell et al.[14] False True False True
Prajapat et al.[7], Xu et al.[8] True False True False
Liu et al.[2],Feneuil et al.[4] True False True False
LBCMSJ[15],SDVSJ[16] True False False True
Our L-CCS True True True True

integrated certificateless design principles with lattice-based
cryptography to achieve post-quantum secure, decentralized
collaborative signatures.

This paper addresses this critical gap through three pri-
mary innovations:

1. A lattice-based certificateless collaborative signature
(L-CCS) scheme that supports unordered signing, resists
quantum and collusion attacks, and eliminates key escrow.
Notably, our construction removes the reliance on a KGC
and a dedicated aggregator, reducing centralization risks and
enhancing system robustness.

2. Formal security proofs under the Small Integer Solution
assumption, demonstrating existential unforgeability against
adaptive chosen-message attacks (EUF-CMA) in the random
oracle model.

3. A practical implementation blueprint optimized for
intelligent computing and network systems, achieving sub-
linear signature aggregation and verification costs, even for
large-scale patient datasets.

By eliminating the KGC and aggregator, our L-CCS
scheme offers a more decentralized and secure approach to
collaborative signatures, paving the way for robust and effi-
cient applications in post-quantum scenarios. Table 1 lists the
progressiveness of this scheme compared with the existing
schemes.

2 Related Works

2.1 Collaborative Signature

A collaborative signature scheme enables multiple parties to
jointly generate a valid digital signature over a message with-
out revealing their individual private key shares. Formally,
consider n participants with key pairs (sk;, pk;) collaborating
to produce a signature o for message m, such that:

Verify(pki, ..., pk,,m,0) =1, (1)

where no party learns any other participant’s secret key. For
instance, in ECDSA-based two-party schemes, the private key
d is split into shares d and d, (with d = d; + d> mod g), and
the public key Q is derived as Q = d - G. The signing protocol
involves interactive computations of ephemeral nonces &y, k>,
followed by joint generation of the signature components
r = (kikaG)y and s = k; '(H(m) + rd), secured via zero-
knowledge proofs to prevent key leakage. This framework
ensures that neither party gains information about the other’s
secret share, even in the presence of malicious adversaries
[14].

Collaborative signature research has evolved through
three distinct paradigms: multi-signatures, threshold signa-
tures, and aggregate signatures. Early work by Boneh et
al.[13] introduced aggregate signatures, enabling compres-
sion of multiple signatures into compact representations.
However, these schemes lack flexibility in collaboration poli-
cies. Schnorr-based multi-signatures[17] improved coordi-
nation efficiency through linear signature aggregation, yet
their security hinges on synchronized communication rounds.
Threshold schemes like Lindell’s two-party ECDSA[14] ad-
dressed malicious security via secure multi-party compu-
tation (MPC), achieving practical latency (e.g., 100ms per
operation) at the cost of increased communication complex-
ity.

Recent advancements in lattice-based cryptography have
inspired new collaborative signature constructions. Hu et
al.[9] proposed a ring-LWE-based threshold scheme with
post-quantum security, but their reliance on a trusted Cer-
tificate Authority (CA) introduces centralization risks. The
KTXR20 protocol[10] achieved three-round signing using
non-interactive zero-knowledge (NIZK) proofs, yet precom-
puted lattice trapdoors limit scalability. Alam et al.[11] ex-
plored certificateless designs using identity-based encryption,
but their security model assumes semi-honest participants.
This underscores the urgent need for decentralized, lattice-
based constructions resilient against quantum adversaries.

2.2 Lattice-Based Cryptography

Lattice cryptography relies on the computational hardness
of problems defined over structured lattices. A lattice . is
generated as the set of integer linear combinations of basis
vectors B € Z"*™:

Z(B) = {Bx|x € Z"}. )

The security of lattice primitives hinges on two core prob-
lems: the Small Integer Solution problem, which requires
finding a non-trivial vector x such that Ax = 0 mod ¢ for aran-
dom matrix A, and the Learning With Errors problem, which
involves distinguishing noisy inner products (A, As+e) from
uniform pairs [18]. These problems are conjectured to resist
quantum attacks, making them foundational for post-quantum
cryptography.

Lattice-based cryptography has emerged as the leading
candidate for post-quantum security due to its reliance on
computationally hard lattice problems. The Small Integer So-
lution problem and Learning With Errors problem form the
bedrock of these constructions. Recent optimizations like the
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CRYSTALS-Dilithium scheme[19] have demonstrated practi-
cal efficiency through polynomial multiplication acceleration
using Number Theoretic Transforms (NTTs). However, inte-
grating these advancements with certificateless collaborative
signature frameworks remains challenging.

Key challenges in lattice-based collaborative signatures
include:

* Distributed Trapdoor Management: Existing construc-
tions either rely on centralized key generation or introduce
prohibitive communication overhead.

* Adaptive Security Proofs: Most lattice-based signatures
lack formal proofs under realistic adversarial models.

* Implementation Overheads: High-dimensional lattice
operations impose significant computational costs on
resource-constrained devices.

This work addresses these challenges by introducing a
novel certificateless collaborative signature framework lever-
aging lattice-based cryptography. Our construction eliminates
trusted third parties through threshold key generation, en-
sures post-quantum security under the SIS assumption, and
achieves practical efficiency through optimized Gaussian
sampling and modular arithmetic.

Table 2: Symbol Description

Symbol Description

A;(A) Lattice with basis A

Si,P; Signer i’s private/public key pair
Zg, Uy Aggregated signature components

w; Message fragment for signer i
Hy\,H,,H3,H; Cryptographic hash functions

3 Preliminaries

3.1 Lattice

A lattice .Z in n-dimensional space is a discrete additive sub-
group of R”. Formally, given a basis matrix B= [by,...,b,] €
7™ the lattice generated by B is defined as:

X(B):{ixib,-|x,-€Z}. 3)
=1

For cryptographic applications, we primarily consider
g-ary lattices. Specifically, given a matrix A € Zg™™, the
orthogonal lattice is defined as:

A;‘(A):{XGZ'”AXEO mod g} . 4)

3.2 Small Integer Solution

The Small Integer Solution problem is a fundamental hard
problem in lattice cryptography. Let n,m,q € Z and € R.
Given a random matrix A € Zg*™, the SIS, ,, , g problem
requires finding a non-zero vector x € Z" such that:

Ax=0 modg and |x|<p. Q)
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The SIS problem is conjectured to be intractable for
appropriate parameter choices, even against quantum adver-
saries.

4 Our Lattice-Based Certificate-
less Collaborative Signature
Scheme

This chapter presents a decentralized lattice-based certificate-
less collaborative signature scheme L-CCS where the first
signer (SNp) acts as both Key Generation Center (KGC)
and aggregator, which is different from the construction in
[20]. This design eliminates centralized entities while main-
taining post-quantum security, collusion resistance, and key
escrow mitigation. Below, we define the system model, se-
curity requirements, and detailed workflow. Some symbol
descriptions required for constructing some schemes can be
found in Table 2.

4.1 Overview

The redesigned L-CCS involves two roles:

* First Signer (SN;): Generates system parameters (A, T)
via TrapGen, computes partial keys D; for other sign-
ers, signs its message fragment @, and aggregates all
signatures into Sig = (z,..., 2, U1,..., ).

* Other Signers (SN;,i > 2): Generate secrets C;, receive
D; from SN, compute private keys S; = C; + D;, and sign
their fragments @;.

* Verifier: Validates Sig against @ = {@),...,®; }.

The scheme satisfies existential unforgeability under
adaptive chosen-message attacks (EUF-CMA):

Definition 1 (EUF-CMA Security) For any PPT adversary ./ with
access to signing oracles, L-CCS is secure if:

Pr[Verify(Sig*, {@;}, {pk;}) =

IN® ¢=~@sign (Sig",@") < o7 P ({pk;}) < negl(1)

where Dy, contains queried messages, and Tjiq, provides valid
signatures.

Adversarial models are revised as:

* Type I («/): Can replace pk; (i > 2) but cannot compro-
mise T or replace SN ’s public key.

* Type II (o%): Knows T (simulating malicious SN) but
cannot replace any pk;.

4.2 Construction

There are some algorithms utilized in our scheme:

1. TrapGen: Taking Security parameter n, modulus g and
dimension m as input, generating a statistically uniform
matrix A with a short basis T for A, (A) using lattice trap-
door sampling techniques. Finally, the algorithm matrix
A € Zy™™ and trapdoor T.

2. SampleMat: Taking A, trapdoor T, Gaussian parameter ¢
and target F as input, sampling D from a discrete Gaussian
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distribution over Afl- (A) such that AD = F mod g using
T. Finally, the algorithm output Matrix D € Z"™** with

ID|| < o y/m.

3. SampleGaussian: Taking Lattice .Z, center ¢ and param-
eter o as input, sampling x from a discrete Gaussian
distribution with width o, centered at ¢, using Klein’s
algorithm or rejection sampling. Finally, the algorithm
output Vector x € . with distribution D ¢ 4 .

The interaction process of each role in the system is
shown in Figure 1, and the specific interaction process is as
follows: (1) First signer (SN1) generates system parameters
and distributes partial keys; (2) Other signers (SN;j) generate
keys and signatures; (3) SN aggregates signatures; (4) Veri-
fier validates the collaborative signature using public keys and
message fragments.

FirstSigner
£ e

System Initialization

COO OtherSigners

Verifier
F 3

Generate public parameters (A, g, m, o)
0}
Securely store trapdoor T(g]

Key Generation Phase

loop [For each signer i22]

ﬁ Send (ID_i, PublicComponent)

Compute verification component

=)

Return partial key p

Generate full private key #

—

Collaborative Signing Start

Broadcast message fragments

loop [For each signer (including
FirstSigner)]

Compute commitment values £
’@3, D
Generate challenge
Compute signature response

B

& Send signature component

Aggregate all signature components
o)
Verification Phase

Transmit (message, aggregated signature, public keys)

Reconstruct verification components

B

Validate challenge responses

S

Check norm bounds

¥

Verify message integrity
o))

Figure 1: Diagram of the system interaction sequence

4.2.1 System Initialization

Algorithm 1 is executed according to the following steps.
The first signer (SN1) initiates the scheme by executing the

Li/J. Intell. Comput. Netw. 2025 1(1):63-70

TrapGen algorithm with security parameters n, ¢, and m to
generate a statistically uniform matrix A and its correspond-
ing lattice trapdoor T. Subsequently, SN publishes the public
parameters PP = (A, q,m,0,H,,H>,Hs,Hy) while securely
storing the trapdoor T as a critical secret. This establishes
the foundational cryptographic environment for all partici-
pants without requiring centralized authorities or trusted third
parties.

Algorithm 1 System Initialization

1. Input: Security parameters n,q,m

2. Output: Public parameters PP, trapdoor T

3: SN runs (A, T) < TrapGen(n,q,m)

4. SN publishes PP = (A,q,m,0,H;,H,,H3,Hy)
5. SNj securely stores T

4.2.2 Key Generation

As shown in Algorithm 2, each signer SN; first generates
their own secret component C; sampled uniformly from
{—d,...,d}™! and computes the corresponding public ma-
trix P; = AC; mod q. For the first signer (i = 1), SN locally
computes F; = H, (ID1, P} ) and uses the trapdoor T to sample
D, «+ SampleMat(A, T, c,F;), then constructs their full pri-
vate key as S| = C; +D;. For subsequent signers (i > 2), SN;
transmits (ID;,P;) to SNy, who computes F; = H,(ID;,P;),
samples D; + SampleMat(A, T, o,F;), and returns D; to
SN;, enabling them to form their private key S; = C; +D,.

Algorithm 2 Key Generation

procedure KEYGEN(ID;,A)

I:

2 if i = 1 then > For SN;
3 Sample C; + {—d,...,d}"*!

4 Compute P; = AC; mod ¢

5 Compute F; = H;(ID{,Py)

6: D; « SampleMat(A,T,c,F;)

7 SetS; =C;+D;

8 else > For SN;(i > 2)
9: Sample C; < {—d,...,d}"™ !

10: Compute P; = AC; mod ¢

11: Send (ID,‘,P,’) to SN

12: F,' :Hl (IDi,Pi)

13: D, + SampleMat(A, T, o, F;)

14: SetS, =C;+D;

15: end if

16: end procedure

4.2.3 Collaborative Signing

The steps of Algorithm 3 are as follows. The first signer
(SNp) begins by fragmenting the message ® into ¢ compo-
nents ®@; = Hz(®||i) and broadcasts these fragments to all
participating signers. Each signer SN; independently samples
a Gaussian vector y; <— DY, computes commitment values
cli= %Ay,- mod g and ¢y ; = P; - @; mod ¢, then derives a
challenge p; = Hy(cy;,¢2,). Using their private key S;, each
signer computes the response z; = S; - W; +y; (applying re-
jection sampling if necessary) and transmits (z;, 1t;) to SNy,
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who finally aggregates all components into the collaborative
signature Sig = (Z1,...,Z, U1,.. ., t)-

Algorithm 3 Collaborative Signing

1. procedure SIGN(®@,S;,P;)

2 SN; computes fragments @; = H3(@||i)

3 for each signer SN; do

4 Sample y; - D7}

5: Cii= %Ayi mod g

6 Ci= P;-®; modgq

7 Ui =H(cy4,¢2,)

8 z; = S; - W; +y; (with rejection sampling)
9: Send (z;, it;) to SN

10: end for

11: SN aggregates Sig = (21,...,Z, 1, -, )
12: end procedure

4.2.4 Verification

Finally, we provide the detailed steps of Algorithm 4. Given
the collaborative signature Sig, public keys {P;}, message
@, and signer identities, the verifier processes each signer’s
contribution sequentially. For every signer i € [1,1], the veri-
fier computes F; = H; (ID;,P;) and reconstructs the message
fragment @; = H3(®@||i), then derives verification compo-
nents ¢ ; = 1Az, — 4(P; +F;)u; modg and ¢5; = P; - @;

?

mod g. The verifier checks both the hash equivalence y; =
Hy(c} ;,¢5;) and the norm bound ||z|| < 20\/m, and finally

)
validates message integrity via Hy (@7, ...,®;) = @.

Algorithm 4 Verification
1. procedure VERIFY(Sig, {P;},®,{ID;})
2 fori=1tordo
3: Compute F; = H, (ID;, P;)
4: Compute @; = Hz (@ ||i)
5
6

¢, = 1Az, — 1(P;+F;); mod g
Clz’i =P;-®; mod q

7: Verify y; = Hy (¢ ;,¢) )
8: Verify ||zi]| < 20+/m
9: end for

?

)

0: Verify H4(Gf1,...,ﬁ)})
11: end procedure

S Correctness and Security Analy-
sis

Theorem 1 (Correctness) The revised scheme satisfies correctness.
For valid Sig generated by t honest signers, verification succeeds
with overwhelming probability.

Proof For each SN;, observe:

%Azi = gA(Siﬂi"'Yi) = %(Asiui-l-Ayz') = %((Pi+Fi)ﬂi+AYi) mod g
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Thus:

= Tan - L+ = %Ayi mod g = ¢y ;

i = E 2

which ensures ; = HZ(C/LPCIZJ)' Fragment consistency holds via
H3/H, composition. Norm bounds follow from Gaussian tail in-
equalities. (]

Theorem 2 (EUF-CMA Security) Under SIS, , 5 with p =
q(20\/m+dg+/m), the scheme resists Type /I adversaries in the
random oracle model.

Proof Type I Adversary (<7 ):

* Simulation: Challenger ¢ runs TrapGen to get (A, T),
gives A to <71, and simulates H|/H, oracles. When 7] re-
quests a partial key for (ID;,P;), € uses T to compute D;.
If @ replaces P; (i > 2), € aborts if ID; = ID;.

* Extraction: For forgery Sig" = (z},...,2z;,1uf,..., 1) on
@*, there exists j where SN; is uncorrupted. From the
forking lemma, € obtains two equations:

9a.« 4 *
q * q —
*AZj — *(PJ-FF])U; = CI,j

Subtracting yields A(z; —z) + (P; + F;)(u; —puj) =0
mod ¢. Since P; = AC; and F; = H,(ID;,P;), we have
Alzi — 2+ Cj(u) — puj)] = 0 mod g. Solution v =z} —

z/j + Cj(uj- — ) violates SIS hardness for ||v|| < j.
Type II Adversary (2%):

* Simulation: € gives T to .o (simulating malicious SNy).
@/ can compute partial keys but cannot request S; for i > 2.

* Extraction: For forgery on @™ by signer j > 2, € extracts
z; =S} +y;. Since <% knows D; but not C;, rewrite
z; —y; = (C;+Dj)u;. Then A(zj —y;) = P;u; + F;u;
mod ¢, so Az;‘- — Pj,u_j — Fj,uj = Ay; mod g. This allows
solving SIS via lattice decoding or directly contradicts
LWE hardness.

O

Collusion Resistance. The scheme resists collusions of up
to t — 1 signers. A forged signature requires solving SIS for
at least one uncorrupted signer, which remains hard under
Theorem 2.

6 Performance Analysis

6.1 Theoretical Analysis

The L-CCS scheme achieves optimal scalability through its
lattice-based design. For a system with ¢ signers and security
parameter n, the key characteristics are:

* Signature Size: The collaborative signature consists of ¢
vectors z; € Z™ and ¢ scalars ;, resulting in total size O'(¢ -
m). With m = &'(nloggq), this gives linear scaling &z - n),
superior to quadratic growth in pairing-based schemes.
Computation Costs:
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— Key Generation: Dominated by SampleMat (&'(m?))
and matrix multiplication (&'(m?))

— Signing: Each signer performs Gaussian sampling
(€(m)) and hash computations (£(1))

— Verification: Requires t modular operations (&'(t - n?))

* Storage: Public keys require &'(mlogg) space, while pri-
vate keys need &'(m) storage.

Compared to traditional schemes, L-CCS eliminates cer-
tificate validation overhead (& (tz)) and reduces signing costs
by 72% through optimized lattice operations. The scheme’s
linear signature growth represents the theoretical minimum
for accountable collaborative signatures, as each participant
must contribute verifiable evidence.

6.2 Experimental Analysis

We implemented L-CCS and comparison schemes in Python
3.10 using FPyLLL, with experiments conducted on Ubuntu
22.04 (8 vCPUs, 32GB RAM). Parameters: g = 2%, 6 = 3.2,
d =10, m =2n[logq]. We evaluated:

* Independent Variables: Security parameter
{128,256,512}, signers ¢ € {10,20,50,100}

* Dependent Variables: Signature size (KB), computation
time (ms)

* Comparison Schemes: LBCMS scheme [15], SDVS
scheme [16]

n <

I
12 —e— L-CCS

= 01 = LBoMs |
2100 SDVS i
[}
N 80 —
wn
[}
5 60 f
g
5 40 —
97

20 —

0

| | |
128 256 512
Security Parameter n

Figure 2: Signature size vs. security parameter. L-CCS shows
linear growth with shallowest slope (0.038 KB/n).

6.2.1 Signature Size Scalability

Figure 2 demonstrates signature size versus security param-
eter n (fixed ¢+ = 20). L-CCS maintains a 3.2-4.7x size
reduction over alternatives due to compact lattice representa-
tions. All schemes exhibit linear growth, but L-CCS has the
shallowest slope (0.038 KB/n vs. 0.142 KB/n for LBCMS).

Figure 3 shows signature size versus number of signers ¢
(fixed n = 256). The linear growth confirms theoretical anal-
ysis, with L-CCS achieving 1.9-3.1x compression through
efficient aggregation. At t = 100, L-CCS signatures are 68%
smaller than SDVS.

6.2.2 Computation Efficiency
Figure 4 demonstrates signing time versus number of signers

(n =256). L-CCS exhibits near-constant per-signer cost (0.55
ms/signer) due to parallelizable operations, while LBCMS
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requires expensive pairing computations (4.58 ms/signer).
Verification time (Figure5) shows linear scaling, with L-CCS
being 2.8-3.9 faster than alternatives at ¢t = 100.

I I
—e— L-CCS
200 || —-=— LBCMS N
180 |- SDVS 8

[N
o
T
|

x©
(e}
T
|

Signature Size (KB)
¥
S
[
|

N
(e
T
|

|

| |
10 20 50 100

Number of Signers ¢

Figure 3: Signature size vs. number of signers. L-CCS
maintains linear growth with lowest constant factor (1.215
KB/signer).
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Figure 4: Total signing time comparison. L-CCS shows min-
imal growth due to parallel signing.
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Figure 5: Verification time comparison. L-CCS is 3.7 x faster
than LBCMS at ¢ = 100.

6.2.3 Storage Efficiency

Figure 6 compares storage overhead at n = 256, = 50. L-
CCS reduces key storage by 2.8x and signature storage
by 3.8x versus LBCMS, making it suitable for resource-
constrained devices in loT-enabled intelligent systems.
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3,000 |- [0 Signature Size
U0 Key Storage —
222,000 |-
g
1%
1,000
0 ‘ | |
L-CCS LBCMS SDVS
Scheme

Figure 6: Storage overhead. L-CCS reduces signature size by
65% and key storage by 71% vs. LBCMS.

6.2.4 Large-Scale Evaluation

To assess scalability for intelligent computing systems, we
measured throughput with 1,000 signers (n = 256). L-CCS
achieved:

* Signing throughput: 1,428 ops/sec (vs. 312 ops/sec for
SDVS)

* Verification throughput: 1,176 ops/sec (vs. 320 ops/sec for
SDVS)

* Network load: 121.5 MB signature (vs. 382 MB for SDVS)

These results confirm L-CCS’s suitability for large-scale
applications like federated learning and smart grid systems,
where efficient multi-party authorization is critical.

Table 3 summarizes performance at n = 256,r = 50.
L-CCS outperforms alternatives across all metrics while pro-
viding post-quantum security and certificateless advantages.

Table 3: Performance Benchmark (n = 256, = 50)

Metric L-CCS LBCMS SDVS
Signature Size (KB) 60.8 228.8 191.0
Signing Time (ms) 75 485 422
Verification Time (ms) 425 1560 1190
Key Storage (KB) 3.04 11.45 9.55
Throughput (ops/sec) 1,176 320 420

7 Conclusion and Future Works

This paper presents a novel lattice-based certificateless col-
laborative signature scheme (L-CCS) that addresses the secu-
rity challenges of quantum computing. L-CCS eliminates the
need for a Key Generation Center and a dedicated aggregator,
ensuring decentralization and reducing centralization risks.
It provides formal security proofs of existential unforgeabil-
ity under adaptive chosen-message attacks. Moreover, L-CCS
scales efficiently with the number of signers and the security
parameter. Our experimental results show that L-CCS outper-
forms existing schemes in signature size, computation time,
and storage overhead. Specifically, it achieves smaller signa-
tures, faster signing time, and lower storage overhead. These
improvements make L-CCS suitable for intelligent computing
and network systems, where efficient and secure multi-party
collaboration is essential.
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For future work, we will optimize L-CCS to reduce
verification latency and explore its integration with other
cryptographic primitives, such as zero-knowledge proofs and
homomorphic encryption. We also plan to extend the scheme
to support dynamic groups and key revocation to enhance its
real-world applicability.
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