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Abstract: In sequential recommendation, both user historical behaviors and product attribute relationships represent crucial
heterogeneous information sources. Fully leveraging this diverse information is vital for enhancing recommendation perfor-
mance. While recent studies demonstrate that integrating these sources can effectively boost performance, existing methods
often fail to adequately address their inherent disparities. This oversight leads to semantic conflicts during fusion, diminishing
recommendation accuracy and interpretability. To address this, we propose a Hierarchical reinforcement learning-based Multi-
Graph Fusion framework(HuF for short) for adaptive heterogeneous information fusion. Specifically, we first model temporal
properties and product attribute relationships as graphs, and transform the fusion task into an interactive task for intelligent
agents. Next, we devise a three-level agent hierarchy: low-level agents first explore paths within their respective graphs; when
path explorations intertwine, the next level (middle-level agent) determines the fusion approach and evaluates information
enhancement needs; subsequently, the high-level agent finally selects the most appropriate low-level agent’s decision contex-
tually. To tackle sparse coupling during learning, we introduce a rapid strategy: each low-level agent first generates paths;
then, only paths exhibiting coupling are retained for subsequent high-level fusion decisions to ensure learning efficiency. We
compare our model with 8 methods on three real datasets, demonstrating its effectiveness. The relevant code can be found at
https://anonymous.4open.science/r/HUF/.

Keywords: Multi-graph; information fusion; hierarchical reinforcement learning; sequential recommendation; knowledge
graph

1 Introduction
Sequential recommendation, based on users’ historical behav-
iors to anticipate future decisions, stands as a highly pivotal
task within the recommendation landscape. In this context,
the user’s temporal interaction patterns [1–4] and the inherent
attribute relationships among products [5–9] manifest as two
profoundly critical forms of heterogeneous information: On
one hand, delving into users’ behavioral sequences permits
the revelation of temporal patterns, thus aiding in compre-
hending the evolution and trends in user behavior; on the other
hand, modeling the attribute relationships among products
into a knowledge graph encapsulates a wealth of semantics,
substantially enhancing the understanding of user behavior
and preferences.

Thus, given the ability of temporal patterns to unveil be-
havioral regularities and the potential of product attribute

relationships to delve into inter-item associations, integrating
these multifaceted pieces of information emerges as a potent
approach. This integration empowers recommendation sys-
tems to better grasp user needs and provide recommendations
aligned with their interests and temporal characteristics[10–
12]. Undoubtedly, this represents an exceedingly effective
methodology. Recent research has extensively corroborated
that the significant enhancement of recommendation system
performance can be achieved by effectively integrating users’
temporal interaction behaviors and the inherent attribute rela-
tionships among products [13–18]. However, these methods
often overlook the inconsistency among heterogeneous infor-
mation, leading to semantic conflicts and mismatches during
the integration process. Consequently, this diminishes the ac-
curacy and interpretability of the recommendations.[19, 20]
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Taking the association between beer and diapers as an ex-
ample, although there exists a clear temporal pattern be-
tween them, the knowledge attributes between the products
may not substantially assist the model in understanding this
temporal pattern. Traditional approaches often involve di-
rectly incorporating knowledge information into sequential
models.[21, 22] While these methods enhance the model’s
performance, they fall short in effectively handling the con-
flict between these two forms of heterogeneous information,
ultimately reducing the accuracy and interpretability of the
recommendations.[23–25]

In this research, we accord equal consideration to the
impact of both the user’s temporal interaction behaviors
and the product attribute relationships on the recommenda-
tion model’s performance. To proficiently merge this diverse
information[26–28], we introduce a Multi-Graph network
fusion framework based on hierarchical reinforcement learn-
ing. To be specific, we depict the temporal aspects of user
shopping behavior and the interconnection among product
attributes through graph modeling, thus converting the con-
ventional fusion task within temporal scenarios into an inter-
active endeavor for intelligent agents. We formulate a three-
tiered intelligent agent framework to govern the interaction
and recommendation decisions between the two graphs. The
low-level agent autonomously navigates paths within their re-
spective graphs. Whenever paths explored by different agents
intertwine, the medium-level agent determines the approach
for fusion between them to gauge the necessity for augment-
ing the information. Lastly, the high-level agent selects the
decision from the lower-level agents deemed suitable for the
current context. To mitigate the sparsity issue encountered
during the learning process due to the infrequent coupling of
path exploration[29–31], we have devised an expedited learn-
ing strategy. Initially, each lower-level agent generates an ar-
ray of paths. Subsequently, we retain exclusively those paths
where the node coupling is observed, utilizing them for fusion
decisions within the medium- and higher-level agent, thereby
ensuring an effective learning trajectory for the model. We
conducted a comparative analysis encompassing eight distinct
methodologies on three real-world datasets, clearly showcas-
ing the efficacy of our model. The associated code has been
deposited at https://anonymous.4open.science/r/HuF/ for fur-
ther in-depth exploration. The main contributions of this
paper can be summarized as follows:

• We employ a Multi-Graph methodology to represent the
diverse information present in temporal scenarios while
maintaining their distinctiveness. Expanding upon this
concept, we design a Hierarchical reinforcement learn-
ing framework to achieve fair utilization of two types of
information.

• We construct a three-layered agent architecture that flex-
ibly integrates and communicates during the exploration
processes of agents on different types of information.
Additionally, we have implemented a pathway selection
method to ensure rapid learning of the model.

• We conduct a comparative analysis of our model with eight
distinct methodologies across three real-world datasets.

The results from these experiments conclusively show-
cased the model’s superiority over a spectrum of algo-
rithms, encompassing sequential models, recommendation
models based on knowledge graphs, and hybrid models.

2 Methods
In this section, we present an intricate exposition of the Hier-
archical Reinforcement Learning-based Multi-Graph Fusion
framework (HUF for short) that we have introduced. The
comprehensive architecture of HUF is illustrated in Figure 1.
Our approach adeptly harnesses both sequential information
and knowledge graph (KG) data for optimizing recommen-
dations. Moving forward, we initiate with a comprehensive
delineation of the model, elucidating the tripartite agent
structure embedded within the framework.

2.1 Notations and Preliminary

Notations. Our model specifically addresses two distinct
types of heterogeneous information. Regarding sequential in-
formation, we define U as the user set and I as the item
set; for each user u ∈ U , the interaction sequence is rep-
resented as iu1:n = iu1 → iu2 → ·· · → iun, where iut denotes the
item interacted by user u at the t-th time step, and n rep-
resents the sequence length. We construct a directed graph
based on sequential product relationships by establishing di-
rected links from preceding products to subsequent products.
This graph, representing the practical information, is denoted
as G u

seq. In terms of KG information, a knowledge graph G
that includes an entity set E and a relation set R is defined as
Gkg = {(e,r,e′

)|e,e′ ∈ E ,r ∈ R}. Here, each triplet (e,r,e
′
)

denotes a fact that the head entity e is connected to the tail
entity e

′
through the relation r .

Task Definition. Building upon these notations, our recom-
mendation task aims to predict the next item interaction for
user u given both sequential graph G u

seq and knowledge graph
Gkg. [32]As demonstrated in [4, 33], this formulation parallels
recommendation tasks in basket- or session-based settings.
For conceptual clarity and simplicity, we exclusively focus
on the next-session recommendation scenario throughout our
model description.
Hierarchical Markov Decision Process. We first briefly in-
troduce HMDP. [34–36] We augment HMDP with a set of
goals G , where each goal represents a state or set of states that
an agent should learn to achieve. Formally, a HMDP is de-
fined as a tuple U = (S ,G ,A ,T ,R,γ) where S denotes
the state set, G the goal set, A the action set, T the transition
probability function (specifically, T (s,a,s′) gives the proba-
bility of transitioning to state s′ when executing action a in
state s), R the reward function, and γ ∈ [0,1) the discount fac-
tor. At each episode’s inception, a goal g ∈ G is selected and
remains fixed throughout the episode. The solution involves
finding an optimal control policy π : S ×G → A that maxi-
mizes the value function vπ(s,g) = Eπ

[
∑

∞
n=0 γnRt+n+1

∣∣∣ st =

s,gt = g
]

for initial state s and goal g.

https://anonymous.4open.science/r/HuF/
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Figure 1: The overall architecture of Hierarchical Reinforcement Learning-based Multi-Graph Fusion framework (HUF for
short). The Low-level Agents(LLA) provide item recommendations based on a corresponding single information source; the
mid-level agent(MLA) is used to determine whether there is information exchange between low-level agents for decision re-
finement, and the high-level agent(HLA) determines which low-level agent’s decision should be utilized in the current context.

2.2 Model Overview

Figure 1 shows the overall architecture of HUF , primarily
composed of Decisions of Low-level Agents, Enhancement
on Medium-level Agent, and Item Selector on High-level
Agent: The Low-level Agents provide item recommendations
based on a corresponding single information source; the mid-
level agent is used to determine whether there is information
exchange between low-level agents for decision refinement,
and the high-level agent determines which low-level agent’s
decision should be utilized in the current context.

In our model, we have a total of three layers of agents. In
this chapter, we will first elaborate on the actions and states
of the three layers of agents:

• states and actions for Low-level agents: HUF maintains
two distinct low-level agents for exploration in the two
graphs. At the t-th time step, the states of these two agents
are defined as sseq

l (t) and skg
l (t), and their corresponding

actions are denoted as aseq
l (t) and akg

l (t) respectively.A
detailed introduction will be given in Section 2.3.

• states and actions for Mid-level action: The mid-level
agent bases its action decision on the current state sm(t), re-
sulting in the action denoted as am(t) to determine whether
to engage in information exchange. am(t) represents the de-
cision probabilities for performing four different actions.A
detailed introduction will be given in Section 2.4.

• states and actions for High-level agent: Given the current
state sh(t)of the high-level agent, it outputs an action ah(t)
that determines which decision from the low-level agents
to retain.A detailed introduction will be given in Section
2.5.

2.3 Decisions of Low-level Agents

HUF manages two low-level agents to explore items on two
graphs separately. Below, we will introduce each of these
agents separately.
2.3.1 Low-level Agent for Sequential Property

On G u
seq, Baby selects items based on the current state sseq

l (t).
Specifically, we construct sseq

l (t) using a GRU [37] as the
sequential state encoder:

sseq
l (t) = GRU

[
sseq

l (t −1); iaseq
l (t)

]
(1)

where iaseq
l (t) denotes the embedding vector for the t-th item

in G u
seq. The initial state is defined as sseq

l (0) = GRU[i1:n].
Subsequently, at each timestep t, the agent selects an action
aseq

l (t) based on the current state sseq
l (t), which corresponds

to recommending the next item it+1 from the item set I . This
action selection is governed by a policy π(sseq

l (t)) that maps
the state sseq

l (t) to a probability distribution over all possible
items; in this work, we implement this policy using a softmax
function to compute item selection probabilities:

π
(
aseq

l (t) | sseq
l (t)

)
=

exp
{

iaseq
l (t) · s

seq
l (t)

}
∑

i∈I
exp
{

i · sseq
l (t)

} (2)

2.3.2 Low-level Agent for KG Property

The Knowledge Graph (KG) model formalizes the KGRE-
Rec problem as a Markov Decision Process (MDP) [38],
defining the state skg

l (t) as a tuple (u,et ,ht) where u ∈U rep-
resents the starting user entity, et denotes the entity reached
by the agent at step t, and ht encapsulates the history prior
to step t—with the k-step history specifically constructed as
the combination of all entities and relations from the preced-
ing k steps. Given an initial user u, the starting state is defined
as skg

l (0) = (u,u, /0). In this paper, the KG model has k = 1.
Therefore, the state at step t is:

skg
l (t) = u⊕ i

akg
l (t)

⊕ i
akg

l (t−1)
⊕ rt (3)

where “⊕” is the vector concatenation operator, rt is the rela-
tion between entities i

akg
l (t−1)

and i
akg

l (t)
. The complete action

space At of state skg
l (t) is defined as all possible outgoing

edges of entity i
akg

l (t)
excluding history entities and rela-

tions. KG model introduces a user-conditional action pruning
strategy to sample action. Specifically, the scoring function
f ((r, i)|u) maps any edge (r, i) to a real-valued score condi-
tioned on user u. Then, the user-conditional pruned action
space of state skg

l (t) , denoted by At(u), is defined as:

At(u) =
{

i | rank
(

f ((r, i) | u)
)
≤ α, (r, i) ∈ At

}
(4)

where α is a pre-defined integer that upper-bounds the size
of the action space. KG model’s action behavior policy is
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defined as:

π

(
akg

l (t) | skg
l (t)

)
=

exp
{

i
akg

l (t)
· skg

l (t)
}

∑
i∈At (u)

exp
{

i · skg
l (t)

} (5)

2.4 Enhancement on Middle-level Agent

MLA is an Information Enhancement selector. It is used to de-
termine whether the recommended items in the LLA undergo
Information Enhancement. If not, the recommended items in
LLA are directly uploaded to HLA as the recommended items
in MLA. If yes, it’s necessary to enhance the recommended
items in LLA with additional information from other infor-
mation sources, and the enhanced items are uploaded to HLA
as the recommended items in MLA.

In LLA, reinforcement learning is performed indepen-
dently between different information sources. Each agent
independently recommends the best items for the user from
its own graph. These recommended items reflect the user’s
preferences for different information sources from a side per-
spective. In some cases, different information sources may
recommend the same item, indicating a crossover between
information sources in terms of this user’s preferences. We
believe that by using the historical recommendation informa-
tion, we can enhance the recommended items. Through exper-
iments (section 4.4.1), we demonstrate that this method helps
improve the performance of the recommendation algorithm.

We construct the state sm(t) of MLA using three vectors.
The user vector and the vectors of items recommended by
LLA through sequential information and KG information:

sm(t) = u⊕ i
akg

l (t)
⊕ iaseq

l (t) (6)

MLA is used to determine whether the items recommended
by LLA should undergo Information Enhancement. In this
paper, we use both sequence and KG information, and the
action space size of MLA is 4. The MLA generates actions
according to the state embeddings sm(t). Specifically, we feed
sm(t) into MLP and a fully connected layer to generate the
t-th MLA action embedding am(t) as:

am(t) = MLP(Wm · sm(t)+bm) (7)

Where Wm and bm are the parameters. am(t) can take four
different values, which are only enhance iseq

l (t) by using KG
information, only enhance ikg

l (t) by using sequential infor-
mation, enhance both, or not enhance either. Regardless of
whether the items are enhanced, they are eventually uploaded
as i

akg
m (t)

and iaseq
m (t) to HLA.

The following provides a detailed explanation of how
to perform Information Enhancement. Since different LLA
agents are heterogeneous agents, the enhancement mecha-
nism for items varies between different information sources.
First is enhancing sequential information by using KG in-
formation. As shown in Huang et al.[4], KG information
contributes to improving the performance of sequential rec-
ommendation algorithms. However, previous methods pri-
marily focused on enhancing item or user representations with

KG information to model users’ short-term behavior[39]. In
contrast, we achieve information enhancement by incorpo-
rating KG historical recommended item sequences into the
sequential information model. For example, when the KG
recommended item, denoted as i

akg
l (t)

, matches the sequence

recommended item, iaseq
l (t):

sseq
l (t) = GRU

[
sseq

l (t); skg
l (t)

]
(8)

At the same time, because the KG model only focuses on the
recommended items from the last step in the history:

skg
l (t) = u⊕ i

akg
l (t)

⊕ iaseq
l (t−1)⊕ rt (9)

When sl(t) in LLA changes, the action al(t) will also nat-
urally differ after going through Eq. (2) and (5) The final
recommended items, as a result, will be uploaded to HLA as
iaseq

m (t) and i
akg

m (t)
.

2.5 Item Selector on High-level Agent

HLA is an Item Selector. It is used to determine the final k
items for recommendation from the k×x items recommended
by MLA.

Similar to sm(t) in MLA, we construct the t-th time step
state sh(t) of HLA by using three vectors. The user vector
and the items vector recommended by MLA using sequential
information and KG information:

sh(t) = u⊕ i
akg

m (t)
⊕ iaseq

m (t) (10)

HLA is used to determine the final recommended items from
iaseq

m (t) and i
akg

m (t)
. In this paper, we use both sequence and KG

information, so the action space size of HLA is 2. The pol-
icy network π(ah(t)|sh(t),Ah) takes as input the state vector
sh(t) and binarized vector Ah and emits the probability of each
action.

Defining an appropriate reward function is crucial for
reinforcement learning algorithms, particularly in recommen-
dation systems where performance is typically evaluated
through exact item ID matching. Drawing inspiration from
machine translation evaluation methods [40], we adapt the
BLEU metric for recommendation tasks. Formally, given
an actual user interaction subsequence it:t+k and the corre-
sponding recommended subsequence iht:t+k, we formulate the
reward function as follows:

Rh = exp

(
1
N

N

∑
n=1

log precn

)
(11)

where precn is the modified precision. This reward function
advocates the recommendation algorithm to generate more
consistent m-grams from the actual sequence.

2.6 Learning and Discussion

Based on the MDP formulation, our goal is to learn a stochas-
tic policy π that maximizes the expected cumulative reward
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for any user:

J(θ) = Eπ

[
k

∑
t=1

γ
tRt | sh(t)

]
(12)

We solve the problem through designing a policy network
and a value network that share the same feature layers. The
model parameters for both networks are denoted as θ =
{W1,W2,Wp,Wv}

There is a challenge in the policy learning process, as the
product sequences generated by various heterogeneous agents
through LLA, denoted as iSt:t+k and iKt:t+k, may not necessar-
ily contain the same products. This is due to the differences
in action spaces between the heterogeneous agents. In this
paper, the action space of the sequential model includes all
items, while the action space of the KG model is generated
through sampling. This difference can result in some users
having no repeated item sequences in LLA training. To im-
prove this issue, We have developed an expedited selection
strategy that entails filtering the paths autonomously gener-
ated by lower-level intelligent agents. Specifically, we retain
only those paths that demonstrate coupling. Subsequently,
these carefully selected paths are employed to optimize the
model, guaranteeing an accelerated learning process.

3 Results
In this section, we extensively evaluate the performance of
the HuF method on real datasets. We begin by introducing
our benchmarks and the corresponding experimental settings.
Then, we quantitatively compare the effectiveness of our
model with other state-of-the-art methods and then conduct
ablation studies to demonstrate how variations in the model
affect our experimental results.

3.1 Data Description

All experiments were conducted on the Amazon e-commerce
datasets collection[41, 42], which includes product reviews
and meta information from Amazon.com. These datasets en-
compass three categories: Clothing, Cell Phones and Beauty.
For all datasets, we removed users and items with fewer than
5 interaction records. In our work, we required access to the
knowledge graph information for each item in the dataset.
Each dataset is treated as a separate benchmark, forming a
knowledge graph containing 5 entity types and 7 relations.
Descriptions and statistics for each entity and relation can be
found in Table 1. We utilized the same data preprocessing
method by following[43–45]. Regarding data splitting rules,
for each user, we sorted their records based on timestamps to
form interaction sequences. Based on the sorted sequences,
we used the first 80% of purchase records as training data and
the remaining 20% as test data.

3.2 Experimental Setup

Baselines. We adopt three types of baselines for comparison,
including sequential-based models, knowledge-based models,
and hybrid models.

• GRU4Rec[37] is a session-based recommendation, which
utilizes GRU to capture users’ long-term sequential behav-
iors.

• CORE[46] proposes a robust distance measuring method
to prevent overfitting of embeddings in the consistent rep-
resentation space to unify the representation space for both
the encoding and decoding processes for recommendation.

• CKE[5] is a contemporary neural recommendation sys-
tem founded on a joint modeling approach that inte-
grates matrix factorization with heterogeneous data modal-
ities—encompassing textual content, visual information,
and structural knowledge bases—to generate top-N recom-
mendation results.

• RippleNet[47] is an embedding-based method that mod-
els users’ potential interests along links in the knowledge
graph for recommendation.

• KGAT[48] explores the high-order connectivity with se-
mantic relations in collaborative knowledge graph for
knowledge-aware recommendation.

• MCCLK[49] hence performs contrastive learning across
three views on both local and global levels, mining com-
prehensive graph feature and structure information in a
self-supervised manner for recommendations.

• KERL[50] adopts an RL model to make recommendations
over KG. In the MDP modeled by KERL, the environment
contains the information of interaction data and KG, which
are useful for the sequential recommendation.

• PGPR[43] performs recommendations and explanations by
providing actual paths with the REINFORCE algorithm
over the KG.

Evaluation Metrics. For each a user, a method will produce
a top-N recommendation list for evaluation. Following, we
employ four representative top-N recommendation measures:
Normalized Discounted Cumulative Gain (NDCG), Recall,
Hit Ratio (HR) and Precision (Prec.). k is set to 5 in our
experiments.
Parameter Settings. In our model, sequential recommen-
dation and KG-based recommendation are respectively per-
formed using the KERLh and PGPR models. For the KERLh
model, the hidden layer size of GRU and item embeddings are
set to 100, and the KG embeddings using TransE[51] have a
size of 50. Regarding hyperparameters, the discount factor γ

for the next item recommendation and the next session rec-
ommendation tasks is set to 0.9, and the window size k is set
to 3. For the PGPR model, all model parameters remain the
same as in the original paper[43]. For our model, we set the
batch size to 64, the learning rate to 0.001, the discount fac-
tor γ to 0.99, and the weight for the entropy loss to 0.001.
Since both the KERLh and PGPR models have embedding
sizes of 100, the size of the state vector st = (u, is, ik) is 300.
For the policy/value network, Wm ∈ R300×4, W1 ∈ R300×512,
W2 ∈ R512×256, Wp ∈ R256×2 and Wv ∈ R256×1.

3.3 Performance Comparison

In this experiment, we quantitatively evaluated the perfor-
mance of our model on recommendation tasks and compared
it with other baselines on all three Amazon datasets. We used
the default settings described in the previous section.
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Table 1: Statistics of datasets for experiments (a.v.l = average sequence length; a.v.e = average entity edges).
Dataset #interactions #users #items #a.v.l #relations #entities #a.v.e
Beauty 198,502 22,363 12,101 8.88 8,200,842 224,074 36.60
Cell 194,439 27,879 10,429 6.97 6,419,242 163,249 39.32
Clothing 278,677 39,387 23,033 7.08 10,714,118 425,528 25.18

Overall, Our HuF method consistently outperforms all
other baselines on all datasets in terms of NDCG, Hit Ratio,
Recall, and Precision. We present the comparison results in
Table 2. From this table, we can observe that:

Looking at the overall trend, all models follow a similar
pattern: For each model individually, their performance met-
rics are highest on the Cell dataset, lowest on the Clothing
dataset, and somewhere in between on the Beauty dataset.

For sequential models, their overall performance metrics
are lower than KG models and hybrid models. They only
achieve metrics similar to or slightly better than KG models
in the Cell dataset, which is the best-performing dataset. In
the other two datasets, sequential models perform the worst.

For KG models, their performance metrics are relatively
stable overall. Except for the Cell dataset where the metrics
are lower than some individual sequential models and the
Clothing dataset where the metrics are higher than some in-
dividual hybrid models, KG models generally have metrics
higher than sequential models and lower than hybrid models
overall.

For hybrid models, except for KERL having lower met-
rics than some individual KG models on the Clothing dataset,
their overall performance metrics are the highest among the
baselines on all three datasets. However, different hybrid
models focus on different types of information. The KERL
model emphasizes sequential information, which is why it
performs better on the Cell dataset. On the other hand, the
PGPR model emphasizes KG information, leading to higher
metrics on the Beauty and Clothing datasets. The MCCLK
model falls in between, with slightly better Hit Ratio metrics
on the Cell dataset compared to the KERL model.

Finally, our proposed HuF method performs the best
among all methods on the three datasets. While other hy-
brid models[43, 49, 50] also utilize some KG information
and some sequential information, they tend to lose some in-
formation during the fusion process. What sets HuF apart is
its ability to retain the full information from both sources
and make recommendations through hierarchical reinforce-
ment learning. With this meaningful extension, our model can
better leverage KG and sequential information for recommen-
dations.

The performance of the HuF model varies across differ-
ent datasets. Based on the data from Table 1, we can observe
that the Clothing dataset has a much larger number of items
(#items=23033) compared to the other datasets, almost twice
the size. This results in relatively sparse information overall.
Additionally, in the Clothing dataset, the value of #a.v.l=7.08,
which is the lowest among the datasets. This indicates that
its sequential information is significantly weaker compared to
the KG information. As a result, our model shows a lower
improvement on the Clothing dataset. On the contrary, in the
Cell dataset, although the sequential information is stronger
than KG information, it is in a better condition compared

to the Clothing dataset. This may be due to the character-
istics of cellphones as products. Our model shows a higher
improvement in this case, but there is still room for further
improvement. The balance between sequential information
and KG information in the Beauty dataset prevents our model
from leaning too much towards one aspect. By fusing in-
formation, we ultimately achieved the highest performance
improvement on the Beauty dataset.

Table 2: Top-5 Recommendation Performance: Baselines vs.
Our Model.The best performance in each column is high-
lighted in bold, with the best baseline performance shown in
red.

Dataset Model NDCG Recall HR Prec.

Beauty

GRU4Rec 1.093 1.822 2.348 0.485
CORE 1.562 2.235 2.549 0.565

RippleNet 1.171 1.988 2.352 0.382
CKE 1.394 2.215 2.938 0.499

KGAT 1.593 2.595 2.758 0.529
MCCLK 1.844 2.839 3.161 0.643
KERL 1.784 2.616 3.37 0.648
PGPR 1.965 3.063 3.43 0.698

HuF(Ours) 2.16 3.215 3.832 0.808
Improv.(%) 9.9 5.0 11.7 15.8

Cell

GRU4Rec 1.764 3.02 3.375 0.69
CORE 2.048 3.286 3.567 0.707

RippleNet 1.726 2.61 2.321 0.423
CKE 1.847 2.871 3.039 0.593

KGAT 1.97 2.818 3.293 0.635
MCCLK 2.155 3.359 3.771 0.762
KERL 2.242 3.532 3.745 0.814
PGPR 2.067 3.201 3.508 0.708

HuF(Ours) 2.345 3.813 3.978 0.859
Improv.(%) 4.6 8.0 5.5 5.5

Clothing

GRU4Rec 0.218 0.381 0.46 0.092
CORE 0.412 0.875 0.951 0.178

RippleNet 0.602 0.731 0.978 0.286
CKE 0.681 0.897 1.186 0.273

KGAT 0.847 0.976 1.167 0.305
MCCLK 1.016 1.182 1.725 0.343
KERL 0.7 1.079 1.777 0.363
PGPR 1.112 1.698 1.881 0.378

HuF(Ours) 1.135 1.756 1.94 0.396
Improv.(%) 2.1 3.4 3.1 4.8

3.4 Ablation Study

HuF has made several important extensions to integrate KG
and sequential information into RL for recommendations. In
this section, we conduct ablation experiments to analyze their
impact.



Wang et al. / J. Intell. Comput. Netw. 2025 1(1):43–53 49

3.4.1 Influence of Data enhancement methods

In this section, we analyzed the impact of different Infor-
mation Enhancement methods on the experimental results.
Recalling that we perform Information Enhancement when
sequential and KG information recommend the same item
and after completing the first round of Information Enhance-
ment, the same information source is no longer used for
further Information Enhancement. Therefore, we compare
three variants to consider the impact of each component on
recommendations, including:

• HuF-enh: No Information Enhancement
• HuF-time: Remove the restriction of Information Enhance-

ment only once; it can be performed multiple times, up to
k times.

• HuF-item: Remove the restriction of recommend the same
item; Information Enhancement can be performed regard-
less of the recommended items by sequential and KG
information.

The results for HuF and its three variants on the Beauty
dataset are shown in Table 3. We observe that the HuF-item
model performs the worst in all evaluation metrics. This could
be because information enhancement for non-repeated rec-
ommended items introduces too much noise. The HuF-time
model performs slightly better in all evaluation metrics, but it
is still worse than the HuF-enh model. This is likely due to the
excessive times of Information Enhancement, which severely
impacted the original information and resulted in overfitting
issues. Finally, by constraining the conditions and the num-
ber of times on Information Enhancement, the complete HuF
model outperforms all its three variants on all evaluation
metrics.

Table 3: Performance comparison of HuF-enh, HuF-time,
HuF-item and HuF over Beauty dataset. Best performance is
in bold font.

Metric NDCG@5 Recall@5 HR@5 Precision@5
HuF-enh 2.145 3.204 3.716 0.8
HuF-time 2.14 3.166 3.761 0.795
HuF-item 2.107 3.117 3.707 0.77
HuF 2.16 3.215 3.832 0.808

3.4.2 Influence of Hierarchical Module Low&High

In this section, we analyze the impact of HLA and MLA on
the experimental results. HLA selects from which informa-
tion source to obtain the recommended items. MLA selects
whether to perform information enhancement and recom-
mends the exact items. Therefore, we compare three variants
and one baseline to consider the impact of each component
on recommendations, including:

• KERLh: Variant of KERL model uses only sequence infor-
mation.

• KERLh+enh: KERLh model after MLA.
• PGPR: PGPR model, same as the baselines in Table 2.
• PGPR+enh: PGPR model after MLA.

HuF and its three variants along with a baseline on the
Beauty dataset are presented in Table 4. We observe that

the KERLh+enh model exhibits improvements in all evalu-
ation metrics compared to KERLh. On the other hand, the
PGPR+enh model shows a decrease in all evaluation met-
rics compared to the PGPR model. This is because when
both models integrate information from the other, it affects
the balance of information, leading to information preference
transfer. To obtain better results, filtering through HLA is nec-
essary. The Table 4 shows that the HuF model outperforms
its three variants and the baseline in all evaluation metrics.

Table 4: Performance comparison of KERLh, KERLh+enh,
PGPR,PGPR+enh and HuF over Beauty dataset. Best perfor-
mance is in bold font.

Dataset Beauty
Metric NDCG@5 Recall@5 HR@5 Precision@5
KERLh 1.085 1.802 2.245 0.469

KERLh+enh 1.097 1.826 2.352 0.486
PGPR 1.965 3.063 3.43 0.698

PGPR+enh 1.953 3.045 3.273 0.66
HuF 2.16 3.215 3.832 0.808

3.4.3 Influence of Sequential or Knowledge Graph Pa-
rameters

In this section, we analyze the impact of the parameters of
the KERLh model and the PGPR model on the experimen-
tal results. The most significant parameter in the KERLh
model that affects the experimental results is the subsequence
length, denoted as k. The most crucial parameter in the PGPR
model that affects the experimental results is the sampling
sizes at each level. Therefore, we compare five variants and
one baseline to consider the impact of each parameter on the
recommendations. The results are shown in Table 5

Table 5: Performance comparison of five variants, one base-
line and HuF over Beauty dataset. Best performance is in bold
font.

Dataset Beauty
Metric NDCG@5 Recall@5 HR@5 Precision@5
KERLh 1.085 1.802 2.245 0.469

KERLh(k=5) 1.013 1.702 2.206 0.458
HuF(k=5) 2.025 3.103 3.695 0.744

PGPR 1.965 3.063 3.43 0.698
PGPR[10,5,1] 1.774 2.845 3.083 0.647
HuF[10,5,1] 1.979 3.075 3.537 0.742

HuF 2.16 3.215 3.832 0.808

The default parameter for the KERLh model is k=3. We
observe that when k=5, all evaluation metrics for the KERLh
model decline. This could be due to the longer search win-
dow possibly containing noisy information, which can affect
the recommendation performance, in line with the findings in
the original paper [50]. In the PGPR model, the default pa-
rameters for ”sampling sizes at each level” are set as [25,5,1].
When the sampling sizes at each level in the PGPR model
are set to [10,5,1], all the evaluation metrics show a decrease.
This might be due to the smaller sampling sizes, which result
in fewer paths being sampled and could lead to the loss of
items with higher ratings. When the evaluation metrics for in-
dividual models decrease, the evaluation metrics for the HuF
model also decrease in tandem. From the Table 5, we ob-
serve that the decrease in evaluation metrics for the KERLh
and PGPR models is roughly proportional to the decrease in
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Figure 2: Real cases of recommendation reasoning paths. The items in the redlining are the final recommended items. The
dashed arrows represent the recommended items that transition after information enhancement.

evaluation metrics for the HuF model. This result suggests
that, for the Beauty dataset, both sequence information and
KG information have similar levels of importance.

3.5 Case Study

In our model, a significant novelty points is that we inde-
pendently use sequential information and KG information
to improve recommendation. Prior experimental results have
demonstrated the effectiveness of our approach in enhanc-
ing recommendation performance; to elucidate the underlying
mechanisms contributing to its utility, we conduct a qualita-
tive analysis through a case study on the Beauty dataset, as
presented in Figure 2.

Specially, we present a snapshot of the purchasing se-
quence for a sample user. The interaction sequence is time-
ordered, consisting of five items. The first two items are
”Stamping Nail Art Set” and ”7 Layers In One Makeup Set.”
The next three items are ”96 Color Eye Shadow Palette,”
”Makeup Apron,” and ”Lipstick Set.” Based on this snapshot,
the user might be a professional makeup artist and needs a
wide range of beauties.

To illustrate the usefulness of HuF model, we will com-
pare it with the KERLh and PGPR models. From the results,
both KERLh and PGPR models seem to get ”stuck” in the
partial user preferences. For example, KERLh model might
assume that the user prefers buying various makeup sets, and
PGPR model recommends an eyeshadow palette with more
colors. HuF is able to successfully capture the user’s pref-
erence drift by selecting items (recommending through both
sequential and KG information simultaneously).

As shown in Figure 2, the sequential model in LLA
recommended items (a,b,c,g, f ), while the KG model rec-
ommended items (a,b, f ,
d,g). There are four repeated recommended items: (a,b, f ,g).
After MLA information enhancement, the sequential model
recommended items (a,b,c,g,h), while the KG model recom-
mended items (a,b, f ,d,e). Item ih is enhanced from i f , and
ie is enhanced from ig. The repeated items (a,b) were not en-
hanced in MLA. Finally, after HLA item selection, the user
was recommended items (a,b,c,d,e), which is the best result
among all five item sequences.

4 Discussion
In this paper, we propose a Hierarchical reinforcement
learning-based Multi-Graph Fusion framework, called HuF.
This is used to ensure the fair utilization of both types of in-
formation while maintaining the uniqueness of sequential and
KG information. Specifically, we have established a three-
level agent architecture, which enables flexible integration
and communication among agents during the exploration of
different types of information. Additionally, we have also im-
plemented path selection methods to ensure the model’s rapid
learning. One of the key novelties in our model is that we
perform information enhancement when low-level agents rec-
ommend the same items repeatedly. The experimental results
demonstrate that our model outperforms the baselines signif-
icantly on three real datasets. We also conducted a detailed
analysis of the HuF model to illustrate the effectiveness of
our extensions. Currently, we are focused on utilizing only se-
quential information and KG information. Additionally, our
information enhancement method is limited to using past
recommended product sequences. As future work, we will
consider how to incorporate more diverse information into
the framework and explore a wider range of methods for
information enhancement.
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