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Abstract: The rapid evolution of next-generation communication technologies has made the integration of Multi-access Edge
Computing (MEC) into Space-Air-Ground Integrated Networks (SAGIN) a critical research frontier. This integration offers
global seamless coverage, ultra-low latency, enhanced reliability, and optimized use of computational and communication
resources. This paper systematically investigates the fundamental principles, technological architectures, and recent advance-
ments of MEC-enabled SAGIN, with particular emphasis on computation offloading methodologies, resource allocation and
management strategies, network architecture optimization, and communication protocol standardization. Critical application
scenarios—including intelligent transportation and autonomous driving, emergency communications and disaster mitigation,
telemedicine and remote education, as well as aerial and maritime mobile services—are analyzed to illustrate the transforma-
tive potential of integrated MEC–SAGIN frameworks. Concurrently, this study examines key technical challenges arising from
heterogeneous dynamic network conditions, constrained resources, computational offloading complexities, security threats, and
privacy concerns. To overcome these challenges, future research directions are proposed, highlighting the integration of ad-
vanced technologies such as digital twins for precise network modeling and optimization, artificial intelligence for intelligent
resource orchestration, blockchain for secure and transparent resource sharing, and quantum computing and communication for
enhanced network security and performance. This comprehensive survey provides a foundational reference for theoretical ad-
vancement and practical deployment of MEC-integrated SAGIN systems, facilitating the evolution toward intelligent, efficient,
and globally interconnected communication infrastructures.
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1 Introduction
1.1 Research Background

Rapid advancements in information technology are reshaping
global communication networks. The full deployment of the
fifth generation of mobile communication technology (5G)
has not only greatly improved data transmission rates and net-
work capacity, but also promoted the rapid development of
emerging applications such as the Internet of Things (IoT) [1],
automated driving and telemedicine. Looking ahead, the re-
search and test of the sixth generation mobile communication
technology (6G) [2] has kicked off, with the goal of build-
ing a communication network system that seamlessly covers
the globe and supports a variety of heterogeneous accesses

while realizing higher data rates, lower latency and greater
connection density.

Against the backdrop of limited coverage, insufficient
network capacity and high latency of traditional terrestrial
communication networks, Space-Air-Ground Integrated Net-
works (SAGIN) has emerged as a new type of network archi-
tecture that integrates the satellite network (space segment),
drone and high-altitude platform network (air segment), and
terrestrial communication network (ground segment). By
integrating satellite networks (space segment), drones and
high-altitude platforms (air segment), and terrestrial commu-
nication networks (ground segment), SAGIN aims to realize
seamless coverage and efficient communication services on a
global scale. Satellite networks offer wide coverage but suffer
from high transmission delays, limited bandwidth, and scarce
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resources. In contrast, aerial networks composed of UAVs and
high-altitude platforms provide flexible deployment, rapid
responsiveness, and supplementary communications. Terres-
trial networks are characterized by high capacity, low latency,
and stable performance.

Mobile Edge Computing (MEC), also known in recent
years as Multi-Access Edge Computing, is an emerging dis-
tributed computing paradigm [3]. MEC meets end-users’
needs for high-bandwidth, low-latency, and real-time services
by deploying compute, storage, and network resources at net-
work edge nodes to push data processing capabilities closer
to the data source. This technology effectively reduces data
transmission latency, improves network performance and ef-
ficiency, and becomes a key technology to support real-time
and interactive applications in 5G and future 6G networks.

With the proposal of SAGIN architecture and the devel-
opment of MEC technology, the convergence of the two has
become an inevitable trend [4]. Figure 1 shows the system ar-
chitecture diagram of the combination of SAGIN and MEC.
The multilayered and heterogeneous nature of SAGIN puts
forward higher requirements for the efficient utilization of
computation, communication, and storage resources, while
MEC, as a key enabling technology, is able to push compu-
tation power to the edge of the network to satisfy the needs
of low latency and high bandwidth for various applications
in SAGIN. However, the convergence of SAGIN and MEC
faces many challenges, including dynamic topology changes,
diverse computing node capabilities, unstable communication
links, and complex resource management.

1.2 Research Motivation and Significance

The rapid advancement of next-generation communication
technologies has underscored the critical need for integrating
MEC into SAGIN [5]. Existing research has predominantly
explored MEC and SAGIN in isolation or focused on narrow
intersections, failing to address the complex synergies and
challenges arising from their integration. This gap is particu-
larly pronounced given SAGIN’s unique architecture, which
combines satellite, aerial, and terrestrial networks to enable
global connectivity [6], while MEC offers low-latency com-
putation capabilities at the network edge. The fragmented
nature of prior studies has left unresolved questions about
how to effectively leverage MEC’s computational resources
within SAGIN’s multi-tiered framework, hindering progress
toward seamless, efficient, and robust next-generation com-
munication systems [7]. The dynamic topology, diverse node
capabilities, and unstable links in SAGIN further exacerbate
the need for a systematic exploration of MEC integration,
as traditional approaches prove insufficient for optimizing
performance in such heterogeneous environments.

The significance of this research lies in its potential
to bridge theoretical and practical divides in communica-
tion and computing infrastructures [8]. The integration of
MEC into SAGIN holds transformative promise for address-
ing long-standing challenges in network coverage, latency,
and resource efficiency. The study’s comprehensive frame-
work for analyzing key technologies, application scenarios,
and future directions not only advances the theoretical un-
derstanding of how edge computing can enhance SAGIN’s

capabilities but also provides tangible guidelines for indus-
try implementations. By identifying technological limitations
and proposing innovative solutions—such as leveraging dig-
ital twins, blockchain, and advanced AI methodologies—this
research paves the way for more resilient and intelligent net-
works [9]. These insights are invaluable for enabling real-time
services in critical domains like emergency communica-
tions, autonomous transportation, and industrial IoT, where
the combination of SAGIN’s extensive coverage and MEC’s
low-latency processing is essential. Ultimately, this work con-
tributes to shaping the technological foundation for 6G and
beyond, ensuring that future networks can meet the escalat-
ing demands of latency-sensitive, data-intensive applications
at scale.

1.3 Contributions and Structure

The integration of MEC with SAGIN represents a promising
yet challenging frontier for next-generation communication
and computing infrastructures. Existing research efforts of-
ten examine MEC and SAGIN in isolation or focus only on
narrow intersections between the two. Although some prior
works, such as [10], have attempted to survey the integra-
tion of MEC and SAGIN, they tend to emphasize specific
aspects, such as MEC deployment strategies, resource man-
agement techniques, optimization algorithms, or the design of
particular network architectures and service frameworks.

In contrast, this survey provides a comprehensive and
systematic investigation of MEC in the context of SAGIN.
It offers an integrated perspective that encompasses key en-
abling technologies, representative application scenarios, and
future research directions. Specifically, the main contributions
of this work are summarized as follows:

Firstly, we establish a clear and unified foundational
framework by comprehensively introducing core concepts
and technological backgrounds of both SAGIN and MEC, ex-
plicitly highlighting the unique characteristics and challenges
posed by their integration. This integrated perspective clari-
fies the complex interdependencies and opportunities arising
from combining MEC’s low-latency computation capabilities
with SAGIN’s extensive coverage and multi-tiered network
architecture.

Secondly, we provide an in-depth and critical analysis
of the state-of-the-art MEC technologies tailored specifically
for SAGIN scenarios, covering computation offloading strate-
gies, resource optimization mechanisms, network architecture
design, and standardized communication protocols. Through
systematic categorization, rigorous evaluation, and identifica-
tion of existing technological limitations, we offer valuable
insights into the practical deployment and performance en-
hancement of MEC-enabled SAGIN systems.

Thirdly, we present a comprehensive overview of cur-
rent challenges and provide innovative, forward-looking
research directions for effectively addressing these is-
sues. Our proposed research pathways integrate multidisci-
plinary cutting-edge technologies—including digital twins,
blockchain, quantum security, energy harvesting, and ad-
vanced AI methodologies—thus laying a clear and practical
roadmap for future academic studies and industry implemen-
tations.
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Figure 1: System Architecture of MEC-enabled SAGIN.

Figure 2 shows the overall structure of this article. The
remainder of this paper is structured as follows. Section
2 introduces fundamental concepts and technological back-
grounds of SAGIN and MEC. Section 3 comprehensively dis-
cusses key MEC technologies in SAGIN. Section 4 presents
representative practical application scenarios. Section 5 crit-
ically analyzes the open challenges and unresolved issues.
Section 6 outlines promising future research directions, and
Section 7 concludes this paper by summarizing key insights,
contributions, and implications.

2 Fundamental Concepts and
Technological Background

2.1 Space-Air-Ground Integrated Networks
(SAGIN)

The SAGIN is a novel network architecture that integrates
satellites, aerial platforms, and terrestrial networks into a

unified architecture. Its primary objective is to provide seam-
less global connectivity and efficient communication services.
With the advent of 5G and the forthcoming 6G communi-
cation technologies, SAGIN has emerged as one of the key
trends in future network development and is widely regarded
as an effective means to overcome the traditional issues
of limited coverage, insufficient network capacity, and high
latency [9, 11].
2.1.1 Space Segment

The space segment primarily consists of satellites positioned
at varying orbital altitudes, including Geostationary Earth
Orbit (GEO), Medium Earth Orbit (MEO), and Low Earth
Orbit (LEO) satellites. Each of these categories exhibits dis-
tinct communication characteristics and caters to different
application scenarios:

• GEO Satellites: GEO satellites, located at an altitude of
approximately 35,786 km, offer extensive coverage but in-
cur relatively long communication delays (around 250 ms
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Figure 2: Overall Structure and Logical Flow of the Paper.

one-way latency). These satellites are typically employed
for broadcast television, fixed communication services, and
ensuring coverage in remote areas.

• MEO Satellites: Positioned at altitudes ranging from
2,000 to 20,000 km, MEO satellites achieve moderate la-
tency (approximately 50–150 ms) and are well-suited for
navigation and positioning services, such as those provided
by the Global Positioning System (GPS) and the Galileo
system.

• LEO Satellites: LEO satellites operate at altitudes be-
tween 200 km and 2,000 km. They are characterized
by lower communication latency (around 10–50 ms) and
higher data transmission rates, making them ideal for
broadband internet access and real-time communication

services. Notable examples include satellite constellation
projects such as SpaceX’s Starlink and OneWeb [12].

Satellite networks possess the inherent advantage of wide
coverage and are less affected by terrestrial environmental
factors, rendering them crucial in remote, maritime, moun-
tainous, and emergency disaster scenarios [13]. However,
challenges such as high transmission delays, limited band-
width, and the high cost as well as scarcity of satellite
resources persist. Consequently, researchers have been ac-
tively working to optimize satellite communication protocols
and develop effective resource management strategies to en-
hance the performance and efficiency of satellite networks
[14].
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2.1.2 Air Segment

The air segment mainly encompasses networks of unmanned
aerial vehicles (UAVs) and high-altitude platforms (HAPs),
which serve as vital bridges connecting the space segment
with the ground segment.

• UAV Networks: UAVs, typically operating at altitudes
ranging from tens to a few hundred meters, provide ben-
efits such as flexible deployment, cost-effectiveness, and
rapid response. These attributes make them suitable for ap-
plications like temporary communication coverage, post-
disaster emergency communications, military operations,
and IoT data collection. Recent research has focused ex-
tensively on UAV-assisted network architecture design,
trajectory optimization, energy management, and resource
allocation strategies to improve overall network perfor-
mance and energy efficiency [15].

• High-Altitude Platforms: High-altitude platforms gener-
ally function within the stratosphere, at altitudes between
17 km and 22 km, and include vehicles such as high-
altitude airships and unmanned high-altitude aircraft. They
are capable of providing extensive area coverage and rel-
atively stable communication links, while offering lower
latency than satellite networks and broader coverage than
terrestrial networks. Notable HAP projects include initia-
tives like Google Loon [16].

The air segment effectively compensates for the higher
latency of satellite networks and the coverage limita-
tions of ground networks by providing flexible and high-
performance supplementary communication solutions. Nev-
ertheless, UAVs and high-altitude platforms face challenges
including limited endurance, susceptibility to adverse wind
conditions, and potential instability in communication links
[17].
2.1.3 Ground Segment

The ground segment comprises terrestrial cellular networks
(e.g., 4G/5G base stations, Wi-Fi access points) and termi-
nal devices (such as smartphones, IoT devices, and vehicular
networks). This segment forms the fundamental infrastruc-
ture and serves as the direct access point for communication
terminals within SAGIN. Its key characteristics include:

• Cellular Networks: These networks are marked by high
capacity, low latency, and robust stability, rendering them
suitable for the communication demands of urban and
densely populated areas. The integration of 5G technol-
ogy has significantly enhanced the performance of ground
communication networks, enabling higher data rates, re-
duced latency, and a considerably higher connection den-
sity [18].

• IoT Devices: The rapid proliferation of IoT devices has
catalyzed the expanded application of ground networks,
particularly in areas such as smart cities, precision agricul-
ture, environmental monitoring, and industrial automation.
Low-power wide-area network (LPWAN) technologies,
including LoRa and NB-IoT, deliver low-cost, energy-
efficient, and wide-ranging communication solutions tai-
lored for IoT applications [19].

In remote areas, over the sea, in mountainous regions, or
following disasters when terrestrial networks may struggle
to provide reliable support, the synchronization of the space
and air segments becomes paramount. The cooperative func-
tionality of SAGIN enables comprehensive network coverage
and ensures efficient communication even in challenging
environments.

Table 1 illustrates a comparative analysis of the key at-
tributes for the Space, Air, and Ground segments in SAGIN,
as described in the literature.

In summary, by integrating the strengths of the space,
air, and ground segments, SAGIN effectively addresses the
challenges associated with network coverage, capacity, and
latency. This holistic approach positions SAGIN as a criti-
cal development direction for next-generation communication
systems.

2.2 Mobile Edge Computing (MEC)

2.2.1 Basic Principles and Architecture of MEC Tech-
nology

MEC is an emerging distributed computing paradigm. Its
primary objective is to deploy computing, storage, and net-
working resources at network edge nodes that are in close
proximity to end devices, thereby meeting the demands for
high bandwidth, low latency, and real-time services by end
users [20]. By leveraging network devices—such as cellular
base stations, routers, and access points—to provide compu-
tational capabilities, MEC brings data processing closer to
the data source, reducing transmission latency and enhancing
overall network performance and efficiency [21].

Typically, the MEC architecture comprises three layers:

• Terminal Device Layer: Consists of various mobile termi-
nals, Internet of Things (IoT) devices, sensors, unmanned
aerial vehicles (UAVs), etc.

• Edge Computing Node Layer: Deployed at the network
periphery (e.g., 5G base stations, small-scale data centers,
routers), this layer is tasked with real-time processing and
analysis of data from terminal devices to enable prompt
responses.

• Central Cloud Data Center Layer: Primarily responsible
for large-scale data storage, deep analytics, and long-term
maintenance, this layer provides services for massive data
analysis and storage [22].

2.2.2 Differences and Interrelationships Between MEC
and Conventional Cloud Computing

MEC and conventional cloud computing exhibit both distinct
differences and close interrelationships. Traditional cloud
computing is typically deployed in remote, centralized data
centers that offer powerful computing and storage resources.
These centers are well-suited for large-scale data analysis,
offline processing, and non-real-time tasks; however, they en-
counter significant latency and bandwidth constraints when
handling real-time tasks [23].

In contrast, MEC deploys these resources at the network
edge, thereby shortening data transmission paths and sig-
nificantly reducing latency—advantages that are especially
beneficial for highly interactive, real-time applications. Im-
portantly, MEC does not aim to replace conventional cloud
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Table 1: Comparative Analysis of Space, Air, and Ground Segments in SAGIN

Attributes Space Segment Air Segment Ground Segment

Coverage
Scope

Global; extensive reach in-
cluding remote, maritime,
mountainous, and disaster-
affected areas

Regional; flexible, rapidly
deployable for temporary
and emergency scenarios

Localized; primarily urban
and densely populated ar-
eas

Communication
Latency

High; GEO ∼250 ms,
MEO ∼50–150 ms, LEO
∼10–50 ms

Moderate; typically less
than satellites, altitude-
dependent

Low; typically below 10
ms with advanced terres-
trial networks (4G/5G)

Data Capacity Moderate; constrained
bandwidth, improved by
LEO constellations (e.g.,
Starlink, OneWeb)

High; flexible, high-rate
links achievable, but en-
durance and link stability
constraints exist

High; robust infrastruc-
ture, significantly boosted
by 5G and dense deploy-
ments

Deployment
Flexibility

Limited; fixed orbits, long-
term planning, slow adjust-
ments

High; rapid deployment,
repositioning, suitable for
dynamic or emergency
scenarios

Limited; static, permanent
installations, modifications
require substantial invest-
ments

Network-
Stability

High stability in terms of
coverage persistence; sus-
ceptible to long delays

Moderate; susceptible to
weather conditions, lim-
ited flight endurance, and
dynamic link quality

High; robust and stable
within coverage areas, vul-
nerability outside dense
deployments

Application
Scenarios

Remote connectivity, mar-
itime communications,
emergency backup, global
broadcasting

Emergency response, tem-
porary coverage, military
communications, IoT data
collection

Urban communications,
industrial IoT, smart cities,
precision agriculture, ve-
hicular networks

Operational
Challenges

High cost, limited band-
width, resource scarcity,
significant propagation de-
lays

Limited operational
endurance, weather sen-
sitivity, potential link
instability

Coverage gaps in rural and
remote regions, vulnerabil-
ity in disaster or extreme
conditions

computing; rather, it complements it. MEC is generally used
as an extension of cloud computing by processing high real-
time or sensitive data tasks locally at edge nodes, while del-
egating storage-intensive and large-scale analytical tasks to
core cloud infrastructures. This collaborative approach facil-
itates more efficient distributed processing and storage [24].
Together, MEC and cloud computing constitute a multi-tiered
architectural paradigm, allowing for dynamic resource allo-
cation and optimization based on the specific requirements of
various tasks.
2.2.3 Application Scenarios of MEC

MEC technology demonstrates promising application
prospects across various domains. Typical application
scenarios include:

• Real-Time Video Analysis and Processing: In contexts
such as smart city surveillance, security monitoring, and
UAV inspections, MEC technology enables the local, real-
time processing and analysis of video streams to facilitate
rapid responses to anomalous events. For example, dur-
ing UAV inspections, MEC platforms can process high-
definition images and video data in real time to accurately
locate faults and trigger appropriate responses, thereby
significantly enhancing both efficiency and safety [25].

• Vehicle-to-Everything (V2X) Communication and Au-
tonomous Driving: In intelligent transportation systems,

MEC processes data from vehicles and traffic infrastruc-
ture in real time via edge nodes, offering low-latency
decision feedback to support collaborative interactions be-
tween vehicles and between vehicles and infrastructure.
The European 5G Automotive Association (5GAA), for
instance, has identified MEC as a key technology in ad-
vancing autonomous driving and intelligent transportation
systems.

• Augmented Reality (AR) and Virtual Reality (VR):
Given the extreme sensitivity of AR/VR applications to
delays, MEC mitigates network latency and reduces band-
width requirements by deploying computing resources
close to the end user, thereby significantly enhancing the
overall user experience. Typical applications include real-
time AR gaming, virtual exhibition spaces, and industrial
remote maintenance [26].

• Industrial Internet of Things (IIoT) and Smart Manu-
facturing: In industrial settings, MEC provides local real-
time data processing capabilities that support intelligent,
edge-based analytics and decision-making. This minimizes
the need to transmit data to a central cloud, thereby im-
proving both security and real-time performance. Notably,
both Germany’s Industry 4.0 initiative and China’s Intel-
ligent Manufacturing 2025 strategy emphasize the critical
role of edge computing in industrial transformation.

In summary, by decentralizing computing capabilities to
the network edge, MEC technology provides critical support
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for applications with high real-time and interactivity require-
ments. It has thereby emerged as a key technological enabler
in the evolution of SAGIN.

2.3 Trends, Demands, and Integration Poten-
tial of SAGIN and MEC

In recent years, the rapid advancement of digital infrastructure
and emerging intelligent applications has driven both aca-
demic and industrial sectors to intensify their focus on SAGIN
and MEC. These two paradigms, though originally evolving
along distinct technological paths, are increasingly seen as
complementary solutions to the complex demands of future
communication networks. This section reviews the respective
development trends and challenges of SAGIN and MEC, and
highlights the strategic value of their convergence.
2.3.1 Development Trends and Focus Areas

In the SAGIN domain, the emergence of mega-constellation
satellite systems (e.g., SpaceX Starlink, Amazon Kuiper) has
marked a shift toward low-latency, high-throughput satel-
lite communications[27]. Research efforts have increasingly
concentrated on dynamic topology management[28], inter-
segment routing protocols[29], and adaptive resource allo-
cation under heterogeneous constraints[30]. In the industry,
SAGIN is being actively explored for its potential to support
global broadband services, emergency communication, and
ubiquitous connectivity in 6G networks[5].

In the MEC domain, the evolution from single-access
edge computing to multi-access and federated edge comput-
ing has attracted considerable attention. Academic studies
are delving into lightweight virtualization, edge AI, and
cross-domain orchestration mechanisms[22]. On the indus-
trial front, major players such as Huawei, Intel, and Nokia
are deploying MEC-enabled solutions in fields ranging from
autonomous driving and industrial automation to immersive
media services. The integration of MEC with 5G infrastruc-
tures is also advancing rapidly, enabling tighter coordination
between computing and communication resources.
2.3.2 Real-World Demands and Persistent Challenges

Despite significant progress, SAGIN faces several operational
challenges, including high dynamicity and heterogeneity
across segments, making seamless handover and routing com-
plex, limited onboard computing and storage resources on
satellites and UAVs, restricting real-time service capabilities
and latency and reliability issues in inter-segment communi-
cation, especially in highly mobile or remote environments.
Similarly, MEC systems confront their own limitations:

• Geographic deployment constraints, with MEC nodes pri-
marily concentrated in urban or populated regions, leaving
coverage gaps in remote or disaster-stricken areas[29].

• Resource limitations at the edge, including computational
bottlenecks and energy constraints[5].

• Scalability and interoperability issues, particularly when
managing multi-tenant environments or cross-operator
deployments[31].

These challenges underscore a pressing demand for more
adaptive, intelligent, and widely accessible computing and
communication frameworks.

2.3.3 Necessity and Prospects of SAGIN–MEC Integra-
tion

The convergence of SAGIN and MEC emerges as a promising
approach to address the above limitations. By deploying MEC
functionalities across the space-air-ground segments, such
as equipping LEO satellites or UAVs with edge computing
modules, the system can achieve:

• Expanded service coverage: MEC capabilities can be ex-
tended to previously underserved or unreachable areas
(e.g., oceanic zones, remote villages, or post-disaster re-
gions), enabled by the ubiquitous presence of SAGIN
nodes[32].

• Reduced end-to-end latency: Computing tasks can be
offloaded and executed directly at or near airborne or
satellite nodes, significantly shortening data transmission
paths[33].

• Improved real-time responsiveness: Time-critical appli-
cations such as autonomous UAV coordination, aerial
surveillance, and cross-domain IoT services can benefit
from faster local processing and decision-making.

• Enhanced resource coordination: The layered topology of
SAGIN allows for hierarchical MEC deployment, sup-
porting adaptive task migration and resource balancing
between segments[5].

Furthermore, the integration fosters context-aware and intelli-
gent services, whereby global network awareness from satel-
lites, local environmental data from UAVs, and user-centric
demands from ground terminals can be jointly processed to
optimize application performance.
2.3.4 Strategic Value for Future Networks and Intelli-

gent Applications

The fusion of SAGIN and MEC not only enhances technical
performance but also holds transformative potential for the
architecture of future networks. It paves the way for:

• Highly resilient and adaptive communication infrastruc-
tures, capable of maintaining service continuity in volatile
environments.

• Intelligent network control and orchestration, leveraging
distributed edge intelligence and cross-layer optimization.

• Scalable support for emerging applications, including
space-based IoT, aerial-edge collaborative sensing, and
6G-enabled metaverse experiences.

In summary, the joint evolution of SAGIN and MEC is both
a necessary response to current technological constraints and
a strategic move toward next-generation, ubiquitous intelli-
gent networks. Their integration sets a solid foundation for
subsequent discussions on resource allocation strategies, ar-
chitectural designs, and intelligent control mechanisms in
complex, multi-domain network environments.
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3 Key MEC Technologies in SA-
GIN

3.1 Computation Offloading

3.1.1 Definition and Classification

With the rapid development of mobile communication and In-
ternet of Things (iot) technologies, the vast amount of data
generated by various terminal devices (such as smart phones,
in-vehicle terminals, unmanned aerial vehicles, sensor de-
vices, etc.) makes computing and communication necessary
to be carried out anytime and anywhere. However, limited by
the computing power, battery capacity and memory resources
of terminal devices, relying solely on local computing of ter-
minal devices has become difficult to meet the requirements
of real-time and energy-sensitive tasks. To solve this con-
tradiction, the technology of partially or fully migrating the
computationally intensive tasks on terminal devices to edge
nodes or the cloud with higher computing capabilities for
processing is called Computation Offloading [34].

Specifically, computing offloading refers to the process
in which terminal devices migrate computing tasks that are
difficult for them to handle or not suitable for local execu-
tion to other nodes in the network (such as edge servers, air
nodes, satellite nodes or cloud servers) through wireless com-
munication technology for efficient processing, and return the
results to the terminal devices after the task execution is com-
pleted [35]. According to the granularity and mode of task
migration, computing offloading is usually classified into the
following categories [36]:

• Full Offloading: In this mode, the entire computational
workload is migrated from the terminal device to remote
nodes, leaving the terminal primarily responsible for data
sensing, basic input/output operations, and result presen-
tation. This approach is beneficial when terminal devices
have extremely limited computing resources or severe
energy constraints.Web-app is a typical example of com-
plete uninstallation [37]. The client is only responsible for
collecting input and displaying output.

• Partial Offloading: In contrast to full offloading, partial
offloading splits the computational workload into multiple
sub-tasks or functional components. Only selected sub-
tasks, especially those with high computational complex-
ity, are offloaded, while the remaining tasks are processed
locally. This mode offers a balance between reducing la-
tency and saving local computing resources, thus being
suitable for situations with moderate computing capacities
or tasks with mixed latency and computational intensity
requirements [38].

• Granularity-based Offloading: Depending on how finely
tasks are partitioned for offloading decision-making,
granularity-based offloading can further be divided into:

– Task-level Offloading: Tasks are treated as indivisible
units when making offloading decisions. This simplifies
offloading decisions and is suitable for relatively simple
and highly independent tasks.

– Component-level Offloading: This method partitions ap-
plications into multiple functional components. Devel-
opers analyze the execution flow and divide computa-
tionally intensive components for offloading, leading to
more optimized resource utilization.

– Method-level Offloading: At this fine granularity, indi-
vidual methods or functions within an application are
selectively offloaded. Such detailed partitioning requires
sophisticated analysis of program structures and execu-
tion patterns, making it suitable for scenarios requiring
highly precise optimization. In the research work of
[39], the character recognition (OCR) of AR applica-
tions was offloaded for calculation, which is a typical
function offloading.

Due to the inherent complexity and heterogeneity of
SAGIN, computation offloading faces unique challenges, in-
cluding dynamic topology changes, diverse computing node
capabilities, and unstable communication links. Therefore,
exploring effective offloading strategies tailored specifically
to SAGIN scenarios has significant theoretical importance
and practical value.
3.1.2 Computation Offloading Architecture Design in

Space-Air-Ground Integrated Networks

Due to the multi-layered and heterogeneous characteristics of
SAGIN, the architecture design for computation offloading
is more complex compared to traditional terrestrial networks.
According to the number of involved nodes, their distribution,
and the coordination mechanism, this paper categorizes com-
putation offloading architectures in SAGIN into single-tier
offloading architecture and multi-tier offloading architecture.

(1) Single-tier Offloading Architecture
The single-tier offloading architecture represents the most

fundamental structure, in which terminal devices directly of-
fload computational tasks to terrestrial edge computing nodes,
such as base station servers or micro data centers, via wire-
less communication networks [40]. The primary advantages
of single-tier architecture include simplicity, ease of deploy-
ment, and rapid task offloading and result feedback. It is
especially suitable for urban scenarios with well-developed
communication infrastructures, relatively low user mobility,
and latency-sensitive applications, such as intelligent trans-
portation, video analytics, and virtual reality (VR) services
[21]. However, its limitations are also evident, including high
dependency on terrestrial network coverage and stability,
making it challenging to provide consistent services in remote
areas or under special circumstances like natural disasters.

(2) Multi-tier Offloading Architecture
Compared to single-tier architecture, the multi-tier of-

floading architecture fully leverages the unique capabilities
of SAGIN by coordinating resources among ground-based
nodes, aerial nodes, satellite nodes, and cloud nodes, thus
achieving more efficient collaborative computation offload-
ing [41]. A typical multi-tier offloading architecture includes
terminal devices, aerial nodes, satellite nodes, terrestrial edge
nodes, and cloud data centers. These nodes collaboratively
optimize offloading decisions and paths dynamically based
on task characteristics, network conditions, and resource
availability.
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Specifically, the main features and advantages of multi-
tier offloading architecture are as follows:

• Aerial-assisted Offloading: Aerial nodes (such as Un-
manned Aerial Vehicles (UAVs), airships, etc.) positioned
between terrestrial nodes and satellite nodes possess ad-
vantages like flexible deployment, rapid responsiveness,
and adjustable positioning [42]. Appropriately deploying
aerial nodes can effectively bridge terrestrial coverage
gaps, reduce link latency, and enhance real-time task pro-
cessing, making them particularly beneficial in emergency
communications, disaster recovery, and rural or remote
area scenarios. Additionally, aerial nodes can dynamically
adjust their positions to further optimize service quality
and computational performance based on user demands
[43].

• Satellite-assisted Offloading: Satellite nodes, including
low-earth-orbit (LEO), medium-earth-orbit (MEO), and
geostationary-earth-orbit (GEO) satellites, can provide
wide geographical coverage, strong communication ca-
pability, and certain computing capabilities [44]. Among
them, LEO satellites are suitable for latency-sensitive ap-
plications due to their lower orbital altitude and shorter
communication delays. In contrast, MEO and GEO satel-
lites, positioned at higher orbits with broader coverage
areas, are more suitable for latency-tolerant tasks such as
wide-area data broadcasting and multimedia content distri-
bution [45]. Satellite nodes are particularly advantageous
in remote, oceanic, mountainous, or disaster-affected areas
where terrestrial and aerial coverage may be insufficient or
unavailable.

• Terrestrial Edge and Cloud Collaboration: The collab-
oration between terrestrial edge nodes and cloud data cen-
ters achieves optimized hierarchical allocation of compu-
tational resources. Due to their proximity to end-users, ter-
restrial edge nodes can efficiently process latency-sensitive
tasks, such as real-time video analytics and augmented re-
ality (AR) applications . In contrast, cloud data centers,
possessing extensive computational and storage resources,
are better suited for large-scale, computationally intensive,
but latency-tolerant tasks, such as big data analytics and
machine learning model training [46]. Through effective
collaboration, edge and cloud nodes can allocate tasks ap-
propriately based on their specific requirements, thereby
optimizing overall system performance.

(3) Applicability and Performance Comparison of Dif-
ferent Architectures

In summary, both single-tier and multi-tier architectures
have their distinct advantages and are suitable for different
application scenarios:

• The single-tier architecture is applicable to scenarios with
well-developed terrestrial network infrastructures, low user
mobility, and latency-sensitive applications, such as intelli-
gent transportation in urban areas, indoor localization, and
AR/VR services.

• The multi-tier architecture is particularly advantageous in
complex environments characterized by inadequate net-
work coverage, geographical constraints, high node mobil-
ity, or heterogeneous task requirements, such as disaster

relief, emergency communications, rural or mountainous
areas, and maritime communications.

Regarding performance, single-tier architecture offers
lower complexity and shorter task latency but is limited in
adaptability. In contrast, multi-tier architecture demonstrates
greater flexibility, coverage, and robustness but involves
higher implementation complexity and more sophisticated
dynamic scheduling algorithms.

Therefore, when practical deployment and applications
are considered, it is essential to comprehensively evaluate net-
work conditions, task characteristics, deployment costs, and
user requirements to select the most appropriate offloading ar-
chitecture. Such careful selection ensures an optimal balance
between resource efficiency and user experience.
3.1.3 Computation Offloading Decision Mechanisms

and Algorithms in Space-Air-Ground Integrated
Networks

Computation offloading decision mechanisms and algorithms
in SAGIN are crucial for achieving efficient, stable, and intel-
ligent task processing. Due to the numerous, heterogeneous,
and highly dynamic nature of SAGIN nodes, computation
offloading presents abundant opportunities but also signifi-
cant challenges for optimization decisions [47]. This subsec-
tion systematically analyzes four aspects: influential factors
for offloading decisions, optimization theory-based methods,
game-theoretic approaches, and machine learning methods.

(1) Analysis of Influential Factors in Offloading Deci-
sions

Network Conditions. In SAGIN, satellite links typically
exhibit propagation delays significantly greater than tradi-
tional terrestrial links. Bandwidth resources are scarce and
costly, and link stability fluctuates markedly due to weather
conditions, obstructions, or the mobility of nodes [48].

Node Status. Node status includes computing resources,
energy constraints, and storage capabilities. Aerial nodes
(e.g., UAVs, airships) have limited battery capacities, making
energy management critical. Satellite node lifespans are con-
strained by energy and equipment longevity, further limiting
computational resource usage. Additionally, terrestrial edge
nodes, although abundant in computing resources, may face
load fluctuations [49].

User Mobility and Task Characteristics. High-speed
user mobility significantly increases the frequency and inten-
sity of network topology changes. Task characteristics, such
as task size, computational complexity, and deadlines, sig-
nificantly affect the selection and optimization of offloading
decisions [50].

(2) Optimization Theory-Based Computation Offload-
ing Methods

Convex optimization methods, favored for theoretical ma-
turity and rapid solutions, were widely adopted in early stud-
ies. Recently, researchers introduce non-convex optimization
methods into SAGIN computation offloading scenarios to
better address complex network characteristics. For exam-
ple, Sardellitti et al. [51] addressed computation offloading
in MIMO multi-cell systems, achieving global optimal so-
lutions via convex optimization in single-user scenarios and
iterative approaches based on successive convex approxi-
mation for multi-user non-convex optimization scenarios,



80 Zhang et al. / J. Intell. Comput. Netw. 2025 1(1):71–97

thereby reducing overall energy consumption under delay
constraints. Yu et al. [52] explored transforming the task
offloading problem in mobile edge computing into a con-
vex optimization problem by jointly considering completion
time and energy consumption, designing a distributed al-
gorithm encompassing offloading strategy selection, clock
frequency configuration, transmit power allocation, and chan-
nel rate scheduling to ensure energy-efficient offloading while
maintaining user experience. Mei et al. [53] deployed edge
servers on satellites and HAP UAVs, utilizing NOMA tech-
nology for spectrum sharing, and formulated a weighted en-
ergy minimization problem jointly considering power control,
computational frequency allocation, and offloading decisions.
They adopted block coordinate descent (BCD), solving sub-
problems via convex optimization and penalty-based CCP
methods. Mixed-integer linear programming (MILP) methods
have been widely employed in offloading problems with dis-
crete decision variables. For instance, Bi et al. [54] modeled
service cache placement, computation offloading decisions,
and resource allocation as a MINLP problem under limited
cache resources, which was further transformed into a pure
0-1 ILP. They iteratively updated caching and offloading de-
cisions using alternating minimization techniques. Khan et
al. [55] proposed a computation offloading algorithm based
on integer linear optimization, enabling mobile devices to
choose among local execution, offloading execution, or task
dropping, effectively addressing energy saving and computa-
tional capacity enhancement challenges introduced by energy
harvesting and MEC technologies in IoT environments.

(3) Game Theory-Based Computation Offloading
Methods

With the continuous advancement of SAGIN technolo-
gies, mobile edge computing has become increasingly critical
in supporting massive data processing and real-time service
requirements. Game theory is widely applied in this domain
due to its precise modeling of interactions among partici-
pants in resource allocation and task offloading. Liu et al.
[56] formulated the task offloading problem as an NP-hard
binary integer linear programming (BILP) problem minimiz-
ing delay and energy consumption, subsequently transform-
ing it into a non-cooperative strategic game. They proved
the existence of Nash equilibrium through potential games
and proposed the Nash equilibrium iterative offloading al-
gorithm (NEIO-G), significantly reducing delay and energy
consumption costs in simulations. Gao et al. [57] proposed
a game theory-based SAGIN computational resource offload-
ing mechanism involving LEO satellites, UAVs, and users,
simultaneously addressing delay and energy consumption by
leveraging multi-level game equilibrium combined with re-
source allocation and pricing strategies, maximizing system
profits and demonstrating superior performance. Zhang et al.
[58] proposed a distributed dynamic task offloading mecha-
nism based on multi-agent stochastic learning from a game
theory perspective. Addressing dynamic challenges arising
from varying task performance weights, sizes, and processing
needs in SAGIN IoT devices, each device was modeled as a
game player aiming to minimize weighted delay and energy
costs. A multi-agent entropy-enhanced stochastic learning

(MESL) algorithm was developed without requiring device-
to-device information exchange, significantly reducing total
costs and substantially improving convergence speed.

(4) Reinforcement Learning Methods
Deep reinforcement learning (DRL), due to its adaptive

decision-making capabilities, is widely applied to computa-
tion offloading in dynamic SAGIN environments. Hwang et
al. [59] addressed the joint optimization of task offloading,
resource allocation, and UAV mobility from a DRL per-
spective. For decentralized implementation, they proposed a
multi-agent DRL method where autonomous UAVs collabo-
ratively determined computation and communication strate-
gies without central coordination. Li et al. [60] formulated
a mixed-integer nonlinear programming model considering
communication, computation, and caching cost constraints,
jointly optimizing computation offloading and resource man-
agement problems. Employing a DRL strategy, tasks were
adaptively offloaded and resources allocated, achieving favor-
able outcomes across varying terminal counts and reducing
reliance on complete formulations and prior information. Xie
et al. [61] proposed a vehicle-based SAGIN computation of-
floading framework, coordinating space, aerial, and terrestrial
resources for real-time offloading decisions. They leveraged
DRL combined with a ranking-based prioritized experience
replay method, substantially outperforming traditional meth-
ods in latency fairness and resource utilization. Tang et al.
[62] proposed a reinforcement learning-based traffic offload-
ing scheme for highly dynamic SAGIN environments. They
adopted an improved delay-sensitive replay memory algo-
rithm (DSRPM) combined with double Q-learning, enabling
nodes to intelligently make offloading decisions based on
local and neighboring historical information. Through hello
packets and offline training mechanisms, their approach out-
performed traditional algorithms in reducing signaling over-
head, enhancing dynamic adaptability, reducing packet loss
rates, and lowering transmission delays.

Table 2 is a summary and comparison of the above-
mentioned various computing offloading algorithms.

3.2 Resource Management and Optimization

In the context of SAGIN, the heterogeneous and dynamic na-
ture of network components poses significant challenges to
the efficient utilization of computing, communication, and
storage resources. MEC, as a key enabler, brings computa-
tion closer to end users across all network layers, making
resource management and optimization a critical issue. Ef-
fective strategies are required to dynamically allocate limited
resources, adapt to changing network topologies, and ensure
low-latency and high-reliability services. This section re-
views the state-of-the-art approaches in resource management
within MEC-enabled SAGIN, highlighting key methods, op-
timization objectives, and open challenges.
3.2.1 Resource Allocation for Throughput Maximiza-

tion

Huang et al. [63] proposed a DRL-based multi-agent algo-
rithm to optimize task offloading and resource allocation in
SAGIN, aiming to improve system throughput while reduc-
ing energy consumption and latency. Zhu et al. [64] proposed
a SAGIN-MEC framework and decomposed the resource
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Table 2: Summary of Different Computation Offloading Methods

Method Cat-
egory

Ref. Methods & Contributions

Optimization
Theory-Based

[51] Employed convex optimization for single-user scenarios and iterative
successive convex approximation for multi-user non-convex scenarios,
minimizing energy under delay constraints.

[52] Transformed task offloading into convex optimization, proposed dis-
tributed algorithm for energy-efficient offloading and user experience
enhancement.

[53] Developed weighted energy minimization using NOMA, solved via
BCD and penalty-based CCP for joint power control and offloading.

[54] Modeled offloading as MINLP, transformed into 0-1 ILP, and solved it-
eratively via alternating minimization.

[55] Proposed integer linear optimization-based offloading for IoT, enabling
local execution, offloading, or dropping tasks.

Game
Theory-Based

[56] Formulated task offloading as potential game, proved Nash equilibrium
existence, proposed NEIO-G algorithm significantly reducing delay and
energy costs.

[57] Proposed multi-level game-theoretic mechanism involving LEO satel-
lites and UAVs, optimizing resource allocation and pricing for system
profits.

[58] Proposed a distributed dynamic task offloading mechanism based on
multi-agent stochastic learning from a game theory perspective.

Reinforcement
Learning-
Based

[59] Proposed decentralized multi-agent DRL approach for joint offloading,
resource allocation, and UAV mobility.

[60] Applied DRL for joint optimization of caching, computation offloading,
and resource management, achieving adaptability without complete
prior information.

[61] Employed DRL with prioritized experience replay for SAGIN offload-
ing, improving latency fairness and resource utilization.

[62] Combined delay-sensitive replay memory with double Q-learning, re-
ducing signaling overhead, packet loss, and transmission delays.

allocation problem into sub-problems for UAV computing,
satellite computing, and task offloading, which were solved
using deep reinforcement learning and convex optimization.
Nguyen et al. [65] studied resource allocation in hybrid edge-
cloud SAGIN by jointly optimizing task offloading, UAV
trajectory, user scheduling, and bandwidth allocation using
alternating optimization and successive convex approxima-
tion methods. Yang et al. [66] proposed a reconfigurable
SDN-based SAGIN architecture and formulated a joint UAV
trajectory and link selection problem, solving it with a K-
means-DDPG algorithm to optimize downlink throughput.
Fan et al. [67] proposed a scalable scheduling framework
and a joint task scheduling and resource allocation algorithm
based on deep reinforcement learning for SAGIN.

These studies in SAGIN resource management and op-
timization focus on leveraging deep reinforcement learning,
multi-agent algorithms, and convex optimization techniques
to jointly optimize task offloading, computing resources, and
link scheduling, aiming to maximize system throughput while
accommodating diverse task requirements. However, due to
the network’s heterogeneity, dynamic nature, and security
threats, designing efficient and robust resource allocation
mechanisms remains a critical and unresolved challenge.

3.2.2 Energy-Efficient Resource Management in SAGIN

redQin et al. [68] proposed a NOMA-enabled SAGIN-IPIoT
model and formulated an energy efficiency maximization
problem, jointly optimizing subchannel assignment and ter-
minal power using matching game and Lagrange dual meth-
ods. Chen et al. [69] proposed a UAV-assisted SAGIN archi-
tecture and designed a TD3-based DRL algorithm to jointly
optimize energy-efficient and fair resource scheduling un-
der jamming constraints. Wei et al. [70] formulated a joint
caching and user selection problem in SAGIN and proposed
a primal decomposition-based algorithm to optimize UAV
caching and user access for energy-efficient resource man-
agement. Zhou et al. [71] proposed an algorithm to jointly
optimize offloading, task allocation, computing frequency,
and UAV deployment for energy-efficient resource manage-
ment in SAGIN. Jiang et al. [72] formulated a joint opti-
mization problem of offloading, scheduling, computation, and
UAV trajectory to minimize weighted energy consumption
in SAGIN, solved via block coordinate descent. Liu et al.
[3] formulated an energy efficiency maximization problem
in SAGIN-supported edge computing by jointly optimizing
association, trajectory, offloading, computing frequency, and
power, and solved it via alternating optimization.
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Recent studies on energy-efficient resource management
in SAGIN focus on formulating joint optimization problems
involving subchannel allocation, task offloading, computing
frequency, UAV deployment, and trajectory planning. Core
methods include decomposition techniques, matching theory,
and DRL-based algorithms such as TD3. While these ap-
proaches enhance energy efficiency under dynamic and con-
strained conditions, challenges remain in handling large-scale
coupling, balancing energy-fairness trade-offs, and achiev-
ing real-time adaptability in highly heterogeneous and time-
varying environments.
3.2.3 User Matching Optimization

Onyekwelu et al. [73] proposed a user clustering algorithm
and decomposed beam-hopping LEO resource allocation into
subproblems solved with heuristic and dynamic optimiza-
tion methods. Sharif et al. [74] formulated a binary linear
programming problem to jointly optimize energy efficiency,
resource utilization, and task-priority-based user association,
solved via BBA, IPM, and BSA methods. Jain et al. [75]
proposed a MILP-based AURA-5G framework to jointly op-
timize bandwidth allocation and access point selection for
user association across multiple application profiles.Mao et
al. [76] proposed a user tracking and beamforming scheme
in SAGIN-ISAC with space- and ISAC-assisted location ac-
quisition for energy-efficient user association. A collaborative
multi-agent DRL algorithm is proposed to jointly optimize
user association and power allocation in SAGINs using only
local information for global energy efficiency [77]. Chen et
al. [78] proposed an energy-efficient data access scheme for
CAE-SAGIN using AANET and reinforcement learning to
jointly optimize resource allocation and request distribution.

User Matching Optimization in integrated networks has
seen diverse approaches including clustering, mathemati-
cal programming (e.g., MILP, binary linear models), and
reinforcement learning. Key optimization goals focus on
improving energy efficiency, resource utilization, and user
association under complex constraints such as task priority,
mobility, and limited information. Recent trends emphasize
decentralized and learning-based methods (e.g., DRL, multi-
agent collaboration) to enable real-time, scalable solutions.
However, challenges remain in achieving globally optimal
decisions under dynamic environments, limited CSI, and
multi-dimensional resource coupling.

Table 3 provides a comprehensive summary of the re-
source management and optimization methods discussed in
this section, categorizing them by their primary focus ar-
eas and highlighting the key techniques employed in each
approach.

3.3 Network Architecture Design and Opti-
mization

3.3.1 MEC and SAGIN Convergence

With the wide application of IoT devices and the increasing
demand for low-latency, high-bandwidth, and high-reliability
communications, the convergence of SAGINs and MECs has
become an important development direction for future com-
munications networks. This converged architecture can fully
utilize the wide coverage and high capacity of SAGIN and the

low-latency computing capability of MEC to provide users
with better quality services.

Literature [4] proposes a SAGIN architecture that in-
corporates blockchain and MEC, where LEO satellites and
UAVs act as edge nodes to provide computation and storage
services. Trust in task offloading and wireless data transmis-
sion is guaranteed through blockchain technology, and MEC
technology is utilized to reduce task execution delay and sys-
tem energy consumption. The architecture minimizes network
energy through intelligent task segmentation, bandwidth al-
location and computational resource allocation, and real-time
online decision making through DDPG algorithm.

Literature [10] describes the network architecture, key
technologies, and challenges of MEC in SAGIN. The article
proposes a three-tier SAGIN network architecture, including
a space tier, consisting of LEO, MEO, and GEO satellites,
an airborne tier, consisting of UAVs and HAPs, and a ground
tier, consisting of ground base stations and edge data cen-
ters. In this architecture, MEC technology is widely used in
edge nodes at all levels to provide low latency and high band-
width computing services. By analyzing the characteristics
and advantages of edge nodes at different levels, the arti-
cle proposes a variety of MEC deployment models, including
single-edge computing, dual-edge computing, and multi-edge
computing, to meet the needs of different application sce-
narios. Meanwhile, the article also deeply discusses the key
technologies of MEC in SAGIN, such as network resource
scheduling, edge intelligence, optimization objectives and key
algorithms, and points out the current challenges and future
research directions, such as high uncertainty, random access
demand, task migration and load balancing, network security
and reliability. Through these analyses and discussions, the
article provides comprehensive guidance and reference for the
development of MEC technology in SAGIN.

Literature [6] provides a comprehensive overview of re-
source allocation strategies in SAGIN. The complexities and
challenges of resource allocation in SAGIN are discussed
in depth, especially in the context of 6G communication
technology, where resource optimization becomes more com-
plex and critical. By classifying and summarizing existing
resource allocation strategies, gaps in current research are
identified and future research directions are discussed. Appli-
cations of mathematical optimization, dynamic optimization,
game theory, and artificial intelligence, including machine
learning, deep learning, and deep reinforcement learning in
SAGIN resource allocation are covered. By analyzing in de-
tail the application of these methods in different network
scenarios (e.g., IoT, Telematics, Edge Computing Networks,
and Emergency Response Networks), it is shown how to op-
timize the performance of SAGIN through intelligent task
allocation, bandwidth allocation, and computational resource
allocation. The importance of resource allocation in guaran-
teeing quality of service, improving network efficiency, and
achieving seamless global coverage is also emphasized, pro-
viding a comprehensive guide and reference for research in
the area of SAGIN resource allocation.
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Table 3: Summary of Resource Management and Optimization Methods in SAGIN

Subsection Ref. Methods Used

Resource Allocation
for Throughput
Maximization

[63] Multi-agent DRL for joint task offloading and resource allocation
[64] DRL and convex optimization for decomposed SAGIN-MEC sub-

problems
[65] Alternating optimization and SCA for edge-cloud joint allocation
[66] K-means-DDPG to jointly optimize UAV trajectory and link selection
[67] DRL-based joint scheduling and resource allocation framework

Energy-Efficient
Resource
Management
in SAGIN

[68] Matching game and Lagrangian dual method for energy-efficient
NOMA-SAGIN

[69] TD3-based DRL for anti-jamming and energy-fair scheduling
[70] Primal decomposition for UAV caching and user selection
[71] Joint optimization of task allocation, UAV deployment and computing

frequency
[72] Block coordinate descent to minimize weighted energy consumption
[3] Alternating optimization of association, trajectory, offloading, and

power

User Matching
Optimization

[73] Heuristic and dynamic optimization for beam-hopping resource alloca-
tion

[74] BBA, IPM, and BSA for priority-aware user association and utilization
[75] MILP-based AURA-5G for bandwidth and AP selection
[76] ISAC-assisted user tracking and beamforming for energy efficiency
[77] Multi-agent DRL using local information for energy-efficient associa-

tion
[78] RL-based data access scheme for CAE-SAGIN

3.3.2 Edge Node Deployment Location Optimization in
SAGIN

In SAGIN, the deployment location of edge nodes has a
significant impact on network performance. A reasonable
deployment location can reduce data transmission delay, im-
prove computational efficiency, and reduce energy consump-
tion. Therefore, optimizing the deployment location of edge
nodes becomes an important issue in the design of SAGIN
network architecture.

Relevant chapters in literature [79] explore task of-
floading, resource allocation, and optimization methods in
SAGIN. A DRL-based task offloading and resource alloca-
tion optimization method is proposed to be applied in an
end-edge-cloud collaborative computing environment. The
method models the task offloading and resource allocation
problem as a Markov Decision Process (MDP) by construct-
ing a multi-user, multi-server system model and solves it
using the Game-PPO algorithm. Through the intelligent task
offloading decision and resource allocation strategies, the
task processing time and energy consumption of mobile de-
vices are effectively reduced and the system performance
is optimized. In addition, the literature also covers research
on data enhancement methods based on Generative Adver-
sarial Networks (GANs), blockchain-based data traceability
optimization, and task offloading and resource allocation in
UAV-assisted vehicular edge computing networks, demon-
strating the application of a variety of advanced technologies
and optimization strategies in the field of SAGIN.

Literature [80] investigates the computational offload-
ing, UAV deployment, and resource allocation optimization

problems in SAGIN. For the nonconvex mixed integer non-
linear optimization problem in SAGIN, the article proposes
an alternating optimization method that optimizes user as-
sociation, partial offloading control, computational resource
and bandwidth allocation, and UAV deployment through it-
erations until convergence. Specifically, the article uses the
successive convex approximation (SCA) method to convexify
the non-convex bandwidth allocation and UAV deployment
subproblems, and verifies the effectiveness of the proposed
design under different network settings through numerical
studies. Simulation results show that the proposed design
improves about 35%-40% in terms of weighted energy con-
sumption compared to the benchmark scheme. In addition, the
article provides insights into the importance of UAV deploy-
ment and computational offloading optimization for achiev-
able weighted energy consumption, providing new ideas and
methods for resource allocation and optimization in SAGIN.
3.3.3 Fault Tolerance and Security Design for SAGIN

Network Architecture

Due to the complexity and diversity of SAGIN, the fault toler-
ance and security design of its network architecture is crucial.
In SAGIN, nodes such as satellites, UAVs, and terrestrial base
stations may be affected by various factors, such as natural en-
vironment, hardware failures, and network attacks. Therefore,
the design of fault-tolerant and secure network architecture is
essential to ensure the stable operation of the network and the
security of user data.

Literature [9] proposes a flexible, low-latency and flat SA-
GIN architecture for 6G. Addressing the problems of existing
5G non-terrestrial network (NTN) architectures in terms of
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Table 4: Comparison of Literature Methods

Key Method Application Scenario Advantage

SAGIN architecture combining
blockchain and MEC, utilizing
LEO satellites and UAVs as edge
nodes

Task offloading and
wireless data transmis-
sion in SAGIN networks

Ensures trust in task offloading and wire-
less data transmission through blockchain
technology; reduces task execution de-
lay and system energy consumption using
MEC technology.

Proposing a three-layer SAGIN
network architecture (space layer,
air layer, ground layer) with
widespread application of MEC
technology at various edge nodes

SAGIN network archi-
tecture design, key tech-
nologies, and challenge
analysis

Provides comprehensive architectural de-
sign guidance; analyzes multiple MEC de-
ployment models (single-edge, dual-edge,
multi-edge computing), meeting diverse
application scenario requirements.

Classifying and summarizing exist-
ing resource allocation strategies,
including mathematical optimiza-
tion, dynamic optimization, game
theory, and artificial intelligence
methods

Resource allocation
strategies in SAGIN

Offers a comprehensive overview of re-
source allocation strategies; identifies fu-
ture research directions, particularly in re-
source optimization under 6G communica-
tion technology.

Task offloading and resource allo-
cation optimization method based
on Deep Reinforcement Learning
(DRL), modeled as a Markov Deci-
sion Process (MDP)

Task offloading and
resource allocation in
edge-cloud collaborative
computing environments

Effectively reduces task processing time
and energy consumption of mobile devices
through intelligent task offloading deci-
sions and resource allocation strategies,
optimizing overall system performance.

Proposing an alternating optimiza-
tion approach to optimize user as-
sociation, partial offloading control,
computing resources and band-
width allocation, and UAV deploy-
ment

Computing offloading,
UAV deployment, and
resource allocation opti-
mization in SAGIN

Demonstrates effectiveness through nu-
merical studies, significantly improving
weighted energy efficiency by approxi-
mately 35%-40% compared to baseline
schemes.

latency and flexibility, the article designs a novel SAGIN ar-
chitecture that integrates the core network (CN) and radio
access network (RAN) into a single network consisting of
a service-based control plane (SBCP), a service-based user
plane (SBUP), and radio units (RUs). With this design, data
transmission latency is reduced, network management flexi-
bility is increased, and the protocol stack is simplified. The
integration methodology of the new architecture, the design
of new interfaces and protocol stacks are elaborated in de-
tail, and the superiority of the new architecture is verified by
analyzing the application requirements and technical needs
of future 6G. In addition, research challenges and directions
for future intelligent deployment of network elements, mo-
bility management, and intelligent session management are
discussed, providing comprehensive guidance and reference
for the development of the 6G SAGIN architecture.

Literature [81] investigates SatBFT, a blockchain-based
consensus protocol in SAGIN, aiming at efficient and secure
spectrum sharing. Aiming at the challenge of reaching con-
sensus on spectrum resource allocation strategies in SAGIN,
a multi-layered architecture of the SatBFT consensus proto-
col is proposed, which combines radio environment sensing,
dynamic behavioral assessment, and an efficient block gener-
ation mechanism. Specifically, the SatBFT protocol consists

of three layers: the link layer, the block generation layer,
and the application layer, each of which is responsible for a
specific blockchain spectrum management function. The ef-
fectiveness of the SatBFT protocol in improving spectrum
utilization, reducing delay and enhancing security is veri-
fied through simulation. The simulation results show that
the SatBFT protocol can significantly improve the overall
performance of the SAGIN network and provide a new solu-
tion for the dynamic allocation and management of spectrum
resources.

To better understand the diversity of approaches in net-
work architecture design and optimization, Table 4 presents a
comparative analysis of the key methods discussed in recent
literature, highlighting their respective application scenarios
and advantages.

3.4 Communication Protocols and Standard-
ization

3.4.1 Current status and development trend of MEC and
SAGIN related communication protocols

In the field of MEC (Mobile Edge Computing), the cur-
rent major communication protocols include HTTP/2 for data
transmission, gRPC, etc. The HTTP/2 protocol improves the
data transmission efficiency through binary frame splitting,
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header compression, etc., and can better support the fast data
interaction between edge devices and servers in the MEC
scenarios. gRPC, as a high-performance RPC framework
It supports multiple programming languages and can real-
ize efficient communication between edge devices and edge
servers [82]. With the development of MEC technology, com-
munication protocols are also evolving. On the one hand,
protocols will focus more on low latency and high reliabil-
ity to meet edge computing applications with high real-time
requirements, such as industrial automation and autonomous
driving. For example, URLLC (Ultra-Reliable Low-Latency
Communication) technology in 5G networks provides MEC
with latency guarantees as low as 1 ms, and the related com-
munication protocols are being optimized to adapt to this
low-latency demand. On the other hand, the security of the
protocols will be further enhanced to cope with potential
security threats in the edge computing environment. For ex-
ample, the Transport Layer Security (TLS) protocol is used to
encrypt the communication data to ensure the confidentiality
and integrity of the data during transmission [83].

In SAGIN, a variety of communication protocols are
involved. In the space segment, satellite communications
mainly use protocols such as DVB-S2 and CCSDS, which
are widely used in satellite digital video broadcasting and
can provide highly efficient data transmission and good anti-
jamming capability [84, 85], while the CCSDS protocol is
mainly used for communications between space data sys-
tems to ensure reliable data transmission between satellites
and ground stations [86]. In the air segment, UAV commu-
nication often uses variants of the 802.11 protocol, such as
802.11ad, 802.11ay, etc. These protocols support communi-
cation in high-frequency bands, and are capable of realizing
high data transmission rates. In the ground segment, it mainly
relies on cellular network protocols such as 4G/5G. In the
future, SAGIN communication protocols will develop in the
direction of convergence and intelligence. On the one hand,
the protocol will pay more attention to the seamless inte-
gration between different network segments to realize the
efficient synergy of space, air and ground networks. For ex-
ample, by developing a unified network interface protocol, it
enables satellites, drones and ground base stations to seam-
lessly interface and form an organic whole. On the other hand,
the protocol will introduce artificial intelligence technology
to realize intelligent resource allocation and traffic schedul-
ing. For example, machine learning-based traffic prediction
algorithms can predict changes in network traffic in advance,
thereby optimizing the parameter configuration of the com-
munication protocol and improving the overall performance
of the network.
3.4.2 Relevant technical standards and progress by in-

ternational organizations

The Third Generation Partnership Project (3GPP) is one of
the important international organizations in the development
of MEC technical standards. 3GPP introduced MEC-related
standards in version R16, defining the architecture and in-
terfaces of MEC systems[87]. European Telecommunication
Standardisation Institute (ETSI) is also actively involved
in the development of MEC standards, and its MEC In-
dustry Specification Group (ISG) has released a number

of MEC-related specifications and guidelines.International
Telecommunication Union (ITU) plays an important role in
the development of SAGIN technical standards, and its satel-
lite communication standards provide the basis for SAGIN
space segment communications. ITU plays an important role
in the development of SAGIN technical standards, and its
satellite communication standards provide the basis for the
space segment communication of SAGIN. In addition, 3GPP
is also actively promoting the development of SAGIN-related
standards, especially in non-terrestrial network (NTN).

At present, MEC technical standards are evolving and
improving. On the one hand, standards organizations are pro-
moting the deep integration of MEC with 5G networks and
formulating relevant technical specifications to achieve effi-
cient deployment and operation of MEC in 5G networks. For
example, 3GPP is studying how to better support the com-
putational offload function of MEC in 5G networks. On the
other hand, standards are also exploring the integration of
MEC with other emerging technologies, such as artificial in-
telligence and blockchain. For example, ETSI is studying how
to apply blockchain technology to the security and trust man-
agement of MEC.SAGIN technology standards are moving
toward a more comprehensive and systematic approach. On
the one hand, standards organizations are formulating unified
network architecture standards to achieve organic integration
of space, air, and ground networks. For example, 3GPP is
studying how to incorporate satellite networks and drone net-
works into the overall architecture of 5G networks. On the
other hand, standards are constantly optimizing communi-
cation protocols to improve the performance and efficiency
of SAGIN. For example, ITU is studying new satellite com-
munication protocols to support higher data rates and lower
latency.

Table 5 summarizes and compares the key methods and
protocols discussed in this section, providing insights into
their specific applications and technical advantages in SAGIN
environments.

3.5 Integration of Deep Learning with SAGIN-
MEC

In recent years, the integration of deep learning (DL) meth-
ods with SAGIN-MEC systems has significantly enhanced
their adaptability, robustness, and intelligence. Building upon
the fundamental SAGIN-MEC components discussed in pre-
vious sections, this section systematically reviews the latest
advances at the intersection of DL and SAGIN-MEC, crit-
ically examining recent progress, unique contributions, and
existing limitations.
3.5.1 Adaptive Computation Offloading Based on Deep

Reinforcement Learning

Adaptive computation offloading strategies play a crucial
role in improving the overall performance of SAGIN-MEC
systems under dynamic and heterogeneous environments. In
recent years, deep reinforcement learning (DRL) has been
widely adopted in computation offloading due to its ability
to autonomously learn optimal policies through continuous
interaction with uncertain and highly dynamic environments.

Ke et al. [88] addressed the task offloading problem in
heterogeneous vehicular networks by proposing an adaptive
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Table 5: Comparison of Key Methods in References

Key Method Scenario Advantage

Integrating the core network (CN)
and the radio access network
(RAN) into a single network in
6G-SAGIN architecture design

6G-SAGIN architec-
ture design

Reduces data transmission delay; increases net-
work management flexibility; simplifies the pro-
tocol stack; enhances overall system performance.

SatBFT consensus protocol based
on blockchain

Spectrum sharing in
SAGIN

Improves spectrum utilization; reduces commu-
nication delay; enhances security; effectiveness
verified through simulation experiments.

Mentioning HTTP/2 and gRPC as
MEC communication protocols

Data transmission
and communication
in MEC scenarios

HTTP/2 increases data transmission efficiency via
binary framing and header compression; gRPC
supports multiple programming languages, facili-
tating efficient communication between edge de-
vices and servers.

DVB-S2, CCSDS for satellite com-
munication, and IEEE 802.11 pro-
tocol variants for UAV communica-
tion

Communication in
different network
segments of SAGIN

Provides standardized protocols for effective data
transmission; robust anti-interference capabilities;
ensures reliable communication among satellites,
UAVs, and ground stations.

computation offloading method (ACORL) based on DRL,
which leverages the Ornstein-Uhlenbeck process for noise
generation to effectively enhance exploration in continuous
action spaces.

Qiu et al. [89] designed an end-edge-cloud collabora-
tive offloading model in dynamic heterogeneous vehicular
edge computing (VEC) networks, and proposed an adap-
tive computation offloading and power allocation (DDPG-
ACOPA) scheme based on the deep deterministic policy
gradient (DDPG) algorithm. By formulating the problem as
a Markov decision process, their scheme jointly considers
stochastic task arrivals, channel variation, and vehicle mo-
bility, achieving minimization of system-wide latency and
energy consumption.

Considering task heterogeneity, Wang et al. [90] mod-
eled mobile applications as directed acyclic graphs (DAGs)
and adopted a meta-reinforcement learning (Meta-RL) based
offloading method. Their approach employs a customized
Seq2Seq neural network, combined with first-order approxi-
mation and truncated surrogate objectives, which significantly
accelerates adaptation and improves sample efficiency in new
environments.

Despite notable theoretical and simulation advances
achieved by DRL-based adaptive computation offloading,
practical deployment still faces numerous challenges, such
as high computational resource consumption, slow training
convergence, and limited model interpretability. Future re-
search should focus on developing efficient, lightweight, and
interpretable DRL models, especially suitable for resource-
constrained aerial and satellite platforms, to facilitate the
practical application and deployment of SAGIN-MEC sys-
tems.

3.5.2 Intelligent Resource Allocation via Multi-Agent
DRL

Resource allocation and management in SAGIN-MEC face
tremendous challenges due to the heterogeneity across inte-
grated segments and the dynamic availability of resources.

Liao et al. [91] proposed a cooperative multi-agent deep
reinforcement learning (CMDRL) method, modeling the
bandwidth allocation problem as a multi-agent cooperative
task. This approach not only significantly improves trans-
mission efficiency but also exhibits strong adaptability to
objectives and low implementation complexity.

In vehicular network scenarios, unmanned aerial vehicles
(UAVs) serve as aerial base stations to provide network ac-
cess and edge computing services for vehicles, especially in
the absence of road-side units (RSUs). For multi-UAV co-
operative service to vehicular terminals, Zhang et al. [92]
introduced an enhanced multi-agent deep deterministic policy
gradient (MADDPG) algorithm, which optimizes trajectory
planning, spectrum allocation, and dynamic data offloading,
thereby significantly reducing task completion latency.

Furthermore, in IoT edge networks, given the computa-
tional and energy constraints of end devices, efficient task
offloading and resource allocation are critical. Seid et al. [93]
put forward a clustered multi-UAV MADRL method, jointly
formulating resource allocation and computation offload-
ing as a stochastic game in the Markov decision process
(MDP) framework. The approach fully considers UAV chan-
nel time-variability and dynamic resource demands, achiev-
ing a 38.6%–55.6% reduction in average cost and a 58.3%–
85.3% increase in reward compared to single-agent DRL and
traditional heuristic methods.

Overall, the MADRL framework effectively enables col-
laborative resource optimization in complex, multi-domain
SAGIN-MEC systems, significantly improving resource uti-
lization and allocation fairness. Nevertheless, as system scale



Zhang et al. / J. Intell. Comput. Netw. 2025 1(1):71–97 87

increases, key challenges remain, including scalability, con-
vergence stability, and inter-agent coordination overhead. Fu-
ture research may further explore hierarchical or distributed
DRL architectures and lightweight neural network models to
balance system performance and deployment feasibility.

In summary, the integration of deep learning with SAGIN-
MEC has brought transformative solutions for adaptive of-
floading, cooperative resource management, network opti-
mization, proactive management, and secure collaboration.
By effectively addressing the inherent dynamics, hetero-
geneity, and complexity of SAGIN-MEC, these DL-driven
methods clearly outperform traditional approaches. However,
several key challenges remain unresolved, including compu-
tational complexity, scalability, data scarcity, robustness, se-
curity vulnerabilities, and interpretability constraints. Further
exploration of lightweight network architectures, efficient
training paradigms (e.g., meta-learning, transfer learning), ro-
bust and interpretable DL frameworks, and comprehensive
hybrid deep learning optimization methods will be indispens-
able.

4 Application
4.1 Intelligent Transportation and Automatic

Driving

In typical vehicular networks (V2X) architectures, sensor
data collected by vehicles—including cameras, LiDAR, and
millimeter-wave radar—is traditionally uploaded to cloud
servers or regional computing centers for processing. The
resulting decisions are then transmitted back to the vehi-
cles [94]. However, this approach suffers from considerable
uplink latency and may result in blind spots or perception
dead zones.

To address these limitations, MEC nodes can perform
real-time inference. MEC servers are deployed at roadside
units (RSUs) such as curbsides, toll stations, and charging
piles. Once a vehicle establishes a direct V2I (Vehicle-to-
Infrastructure) connection with a nearby base station, sensor
data can be locally processed within a few milliseconds [95,
96].

SAGIN further extend the perception capabilities by
leveraging mobile satellite platforms and airborne platforms
(APs). For example, long-endurance UAVs equipped with
high-resolution cameras or millimeter-wave radars can be
deployed along major transport hubs or highway loops to
monitor vehicle traffic across tens of square kilometers in
real time [97]. The UAVs transmit image data to underlying
MEC nodes, which perform tasks such as vehicle detection
and trajectory prediction. The results are then aggregated at
ground-based command centers.

To mitigate communication blind spots, particularly in
suburban areas, mountainous regions, and remote highway
segments, where terrestrial 4G/5G coverage is often weak
or intermittent LEO/MEO satellite links within the SAGIN
framework provide uninterrupted connectivity. This ensures
consistent communication support for autonomous vehicles,
even under extreme weather conditions or in challenging en-
vironments such as tunnels and mountainous roads. Through

dynamic satellite link switching, vehicles can access traffic
information from virtually any location [98].

Compared to conventional architectures that rely solely
on cloud computing or ground-based perception, the integra-
tion of MEC with SAGIN enables millisecond-level response
times during critical moments. This hybrid approach over-
comes the limitations of terrestrial networks and offers robust
support for intelligent transportation and autonomous driving,
particularly in remote and complex terrains.

4.2 Emergency Communication and Disaster
Response

Terrestrial communication infrastructure is highly suscepti-
ble to damage or congestion during natural disasters such
as earthquakes, floods, and wildfires, as well as unexpected
emergencies. Traditional emergency communication strate-
gies often rely on temporary base stations or direct satellite
communication, both of which face significant challenges.
Base station repairs are costly and time-consuming [99],
while satellite links often provide limited bandwidth and high
latency, hindering the transmission of large-scale data es-
sential for disaster assessment and rescue coordination [100,
101].

SAGIN offers a superior alternative by enabling the rapid
deployment of multi-tiered emergency communication net-
works [102]. When ground base stations are completely dis-
abled, LEO satellite links can be immediately activated to es-
tablish a backhaul network for the affected area. Concurrently,
UAVs can form high-density communication meshes over
disaster zones, linking on-site terminals—including tablets,
mobile phones, and ambulance communication devices—to
satellite backhaul networks.

Under the SAGIN paradigm, once the terrestrial network
is partially restored, it collaborates with satellite and UAV
relays to form a resilient, multi-path redundant communica-
tion infrastructure. Edge computing tasks can dynamically
switch between available links to optimize performance and
reliability [29, 103]. For example, when UAVs experience
power depletion, the system can automatically reroute data
through MEO satellites. Similarly, once 5G base stations re-
sume operation, communication can be preferentially shifted
to terrestrial networks to reduce overhead.

4.3 Telemedicine and Remote Education

In remote or resource-limited areas, traditional telemedicine
and education typically rely on limited terrestrial internet con-
nectivity, where fiber-optic or public LTE/5G networks are
difficult to deploy, and sometimes ADSL or satellite connec-
tions are used [104]. However, fiber deployment is expensive
and time-consuming, while direct satellite links have limited
bandwidth and high latency (round-trip delay of approxi-
mately 250 ms–600 ms) [105, 106], resulting in severe video
stuttering and image lag. Due to centralized computing bot-
tlenecks, a large volume of medical images, such as CT, MRI,
and ultrasound scans, must be transmitted to central hospi-
tals for analysis by remote experts or cloud-based AI models,
which is often time-consuming and unfavorable for urgent
diagnosis and decision-making. In addition, most schools in
remote mountainous or island regions rely on pre-recorded
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courses, making real-time interaction difficult [107]. A sub-
stantial amount of multimedia educational content must be
retrieved from urban central education platforms, leading to
high data costs and vulnerability to network jitter.

Edge AI models are redefining the paradigm of med-
ical diagnosis. By deploying MEC servers in county-level
hospitals or township clinics [108, 109], pre-trained med-
ical image segmentation and classification models can lo-
cally accomplish tasks such as lung CT lesion detection and
key feature extraction from fetal ultrasound images. Only
critical information, such as “lesion location” and “lesion
grade,” is uploaded to municipal or provincial centers, thus
conserving bandwidth and significantly reducing diagnostic
time. Furthermore, compared to traditional educational net-
works, MEC nodes in remote schools can pre-cache popular
courses—such as mathematics, English, and physics demon-
stration videos—from municipal education cloud platforms
or county-level live broadcast centers. When students request
these resources, educational terminals access them locally,
thereby avoiding classroom stutter or waiting caused by net-
work jitter. Additionally, the combination of LEO satellite
links and terrestrial MEC can provide stable video conferenc-
ing and multimedia transmission capabilities.

4.4 Aerial and Maritime Mobile Services

On high-speed mobile platforms such as airplanes, high-speed
rail, and ships, passengers often experience limited network
quality [9, 110]. For example, high-speed trains may en-
counter signal blind spots in tunnels, mountainous regions,
or bridges; after takeoff, aircraft cannot connect to ground
networks for a short period and must rely on satellite links;
and ocean-going vessels lose all terrestrial signals after leav-
ing port. Traditional onboard Wi-Fi or shipboard networks
mostly use terrestrial 4G/5G relay, which can suffer packet
loss when traversing different base stations. Although di-
rect satellite links provide global coverage, they feature high
round-trip latency (about 250 ms–600 ms) and expensive,
limited bandwidth. Airborne MEC nodes can effectively al-
leviate resource constraints; when network latency fluctuates,
users can swiftly switch to locally cached offline content
in MEC, thus avoiding prolonged waiting. Satellite remote
sensing enables rapid acquisition of large-scale meteorolog-
ical data, such as cloud cover, wind speed, and atmospheric
pressure [111]; HAPs are responsible for three-dimensional
regional meteorological detection; airborne MEC, combined
with aircraft sensors (e.g., wing accelerometers, barometers,
thermometers), can perform local real-time meteorological
inference to assess risks such as turbulence and icing [112].
Each vessel can deploy a compact MEC node; near the sea
surface, HAPs serve as aerial relays or connect via LEO
satellite links, forming a multi-link mesh within the fleet.
Ships can locally complete intelligence fusion, situational as-
sessment, and coordinated decision-making, thereby reducing
dependence on shore-based centers.

Table 6 provides a comprehensive comparative analysis of
the application scenarios discussed in this section, summariz-
ing the main challenges, technical solutions, and remaining
issues for each scenario in MEC-enabled SAGIN systems.

5 Challenges
The integration of SAGIN with MEC presents numerous
open challenges that require detailed analysis and targeted
solutions. In this section, we explicitly clarify each chal-
lenge, providing their detailed manifestations and underlying
causes.

5.1 High Mobility and Dynamic Network Con-
ditions

Due to the high mobility of aerial nodes (UAVs, HAPs) and
satellites (particularly LEO satellites), SAGIN exhibits fre-
quent topology variations and intermittent connectivity. This
leads to unstable communication links and unpredictable net-
work states, severely complicating the timely offloading of
computational tasks and the effective allocation of resources.
Traditional static or semi-static scheduling approaches lack
adaptability in rapidly changing SAGIN environments, re-
sulting in increased latency and degraded user experience
[6, 8].

5.2 Complexity of Joint Computation and
Communication Optimization

In SAGIN-MEC environments, computation and communi-
cation resources are strongly coupled and interdependent.
This joint optimization complexity arises from the neces-
sity to simultaneously consider multiple conflicting objec-
tives—including latency reduction, throughput maximization,
and energy efficiency—under continuously fluctuating net-
work conditions and service demands. Existing optimization
methods often fail to adequately balance these objectives,
resulting in suboptimal overall performance and inefficient
resource utilization [5].

5.3 Challenges in AI Integration and Data
Availability

Integrating artificial intelligence into SAGIN-MEC systems
faces practical difficulties due to limited availability of
labeled datasets that accurately represent dynamic, multi-
layered SAGIN scenarios. Additionally, common AI models
are computationally intensive, making deployment challeng-
ing on resource-constrained aerial and satellite platforms.
Furthermore, the absence of unified cross-layer AI frame-
works constrains collaborative decision-making and limits
the effectiveness and scalability of current AI solutions in
heterogeneous SAGIN environments [113, 114].

5.4 Security Threats and Privacy Preservation
Issues

The integration of heterogeneous network segments (space,
air, ground) expands the potential vulnerability surface, ex-
posing SAGIN-MEC systems to threats such as satellite com-
munication interference, UAV hijacking, and data breaches.
Privacy-preserving mechanisms in task offloading and data
processing face additional challenges from varying privacy
requirements, dynamic link-level threats, and the computa-
tional overhead associated with encryption methods. Most
existing approaches cannot simultaneously satisfy stringent
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Table 6: Comparative Analysis of Typical Application Scenarios in MEC-enabled SAGIN

Scenario Main Issues Key Technical Solutions Remaining Challenges

Intelligent Trans-
portation

Network blind spots,
latency-sensitive
control

UAV-MEC deployments,
LEO satellite integration,
edge AI models

Seamless cross-tier han-
dover, real-time dynamic
topology management

Emergency Commu-
nication

Infrastructure
damage, limited
bandwidth

UAV relay networks, satel-
lite backhaul, MEC-based
local processing

Efficient bandwidth alloca-
tion, energy-limited UAV
endurance

Telemedicine & Re-
mote Education

Limited terrestrial
coverage, high la-
tency

MEC-based local caching,
satellite uplink optimization

Bandwidth-constrained
satellite links, standardized
data sharing protocols

Aerial & Maritime
Mobile Services

High mobility, inter-
mittent connectivity

Satellite links, MEC nodes
on vehicles, local caching

High latency of GEO satel-
lite links, dynamic edge re-
source allocation

latency, security, and privacy requirements in dynamic SA-
GIN environments [115].

5.5 UAV-Assisted MEC Deployment Difficul-
ties

Deploying MEC platforms on UAVs introduces several prac-
tical constraints, including limited onboard computing capac-
ities, strict energy constraints, and complex topology man-
agement due to UAV mobility. Ensuring stable, efficient, and
adaptive task offloading between UAVs and terrestrial nodes
remains challenging. Moreover, the lack of standardized and
unified MEC-UAV coordination frameworks limits practical
scalability and real-world deployment feasibility [116].

5.6 Hybrid Optimization Problem Complexity

The integration of discrete offloading decisions (such as
choosing which tasks to offload) and continuous resource
allocations (such as bandwidth and computing frequency)
creates complex, non-convex optimization problems. Cur-
rent Multi-Agent Reinforcement Learning (MARL) algo-
rithms experience significant challenges handling these hy-
brid discrete-continuous action spaces, restricting their effec-
tiveness in large-scale SAGIN resource management scenar-
ios [117].

5.7 Application Placement Challenges

Efficient application placement across SAGIN-MEC systems
is complicated by heterogeneous and dynamically changing
resource availabilities at different network layers. Diverse
real-time application requirements, fluctuating network con-
ditions, and stringent latency constraints lead to imbalanced
resource usage and increased computational overhead. Exist-
ing methods generally fail to achieve real-time adaptability
and scalability in handling multi-objective placement opti-
mization problems [118].

5.8 Robustness and Security Issues in Rein-
forcement Learning Approaches

Applying reinforcement learning (RL) to SAGIN-MEC faces
challenges due to node mobility, intermittent connectivity,
and diverse hardware constraints, all of which complicate
the design of generalized and scalable RL models. Further-
more, ensuring robust, secure, and privacy-preserving RL
becomes essential when sensitive data is processed across dis-
tributed SAGIN nodes, posing additional practical challenges
to existing RL methods [119].

6 Future Research
Building upon the challenges and limitations identified in
previous sections, we propose the following detailed and
actionable research directions to advance the integration of
MEC and SAGIN.

6.1 Intelligent and Adaptive Resource
Scheduling

Due to the dynamic topology induced by high mobility
of aerial and satellite nodes, traditional static scheduling
schemes are inadequate. Specific research questions include:

• How can real-time predictive algorithms be developed to
forecast topology changes and resource availability effec-
tively?

• What lightweight AI methods can efficiently predict Inter-
Satellite Link (ISL) conditions, enabling stable and effi-
cient task offloading?

Potential research approaches include integrating digi-
tal twin technology with Multi-Agent Deep Reinforcement
Learning (MADRL) methods for proactive resource adapta-
tion. Federated learning frameworks could also facilitate dis-
tributed and adaptive decision-making across heterogeneous
SAGIN nodes [120].
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6.2 Robust Security and Privacy Mechanisms

Security risks across heterogeneous SAGIN domains remain
significant. Critical future research directions include:

• How can lightweight blockchain protocols, such as en-
hanced SatBFT, ensure decentralized authentication and
security auditing?

• How can Quantum Key Distribution (QKD) techniques be
integrated to secure sensitive data transmissions between
satellites and MEC nodes?

• How can satellite-based global threat intelligence dynami-
cally enhance MEC security policies?

Promising approaches include blockchain-based decen-
tralized frameworks and quantum cryptography advance-
ments to enhance secure communication channels and miti-
gate emerging threats [121].

6.3 Energy-Efficient MEC Architectures

Energy efficiency remains critical for resource-constrained
aerial and satellite MEC nodes. Specific research questions
include:

• How can renewable energy harvesting technologies effec-
tively extend UAV and satellite operational lifetimes?

• What scheduling algorithms can optimize satellite in-
termittent computing capabilities while ensuring service
continuity?

• How can satellite-aided renewable energy forecasting en-
hance UAV deployment and task scheduling efficiency?

Future research could focus on solar-powered UAV MEC
platforms, intermittent-computing-aware scheduling meth-
ods, and dynamic workload migration strategies favoring
renewable-powered terrestrial data centers [122].

6.4 6G-Enabled Converged Network Architec-
tures

Emerging 6G technologies present significant opportunities to
enhance SAGIN-MEC integration. Critical research questions
include:

• How can Reconfigurable Intelligent Surfaces (RIS) de-
ployed on UAVs dynamically enhance wireless communi-
cation channels?

• What semantic communication techniques can reduce
bandwidth demands by extracting and transmitting essen-
tial data features?

• How can holographic beamforming optimize multi-hop
MEC links across space-air-ground layers?

Potential paths include developing RIS-enhanced UAV
platforms, semantic-aware communication protocols, and ad-
vanced holographic beamforming solutions [9, 123].

6.5 Resilient MEC Architectures in Extreme
Scenarios

Enhancing SAGIN-MEC resilience under extreme conditions
is crucial. Specific research topics include:

• How can autonomous UAV swarms and satellite-edge
cached containers quickly form self-organizing emergency
MEC networks?

• What unified resilience metrics (e.g., Service Survival
Time per Recovery Energy) can standardize robustness
evaluation?

• How can simulation platforms such as OMNeT++ effec-
tively validate resilient SAGIN-MEC architectures?

Future studies could explore autonomous UAV-swarm al-
gorithms, edge-caching strategies, and advanced simulation-
based evaluation frameworks [124].

6.6 Unified Standardization and Protocol In-
novation

Standardization is essential for seamless MEC-SAGIN inte-
gration. Key research considerations include:

• How can a unified API framework based on gRPC facilitate
seamless task migration across heterogeneous nodes?

• What Delay-Tolerant Networking (DTN) protocols can
reliably ensure computation and communication in inter-
mittently connected networks?

• How can international organizations (e.g., 3GPP, ITU)
collaboratively develop comprehensive MEC standards tai-
lored for Non-Terrestrial Networks (NTN)?

Future research could focus on unified API definitions,
reliable DTN protocols, and collaborative standardization
efforts [125].

7 Conclusion
The integration of MEC into SAGIN is positioned as a pivotal
approach to addressing the growing demands for seamless
global coverage, low latency, and high computational effi-
ciency in next-generation networks. This survey provides a
comprehensive analysis and synthesis of existing literature,
emphasizing the technological foundations, recent advance-
ments, practical applications, critical challenges, and future
research directions related to MEC-enabled SAGIN.

Through an extensive review, this article elaborates on
core MEC functionalities within SAGIN, such as computation
offloading, resource management, network architecture opti-
mization, and protocol standardization. The detailed explo-
ration of these components underscores the complexity and
heterogeneity inherent in SAGIN, highlighting the necessity
for sophisticated and adaptive technological solutions.

The presented application scenarios, including intelligent
transportation, emergency communications, telemedicine, re-
mote education, and aerial and maritime services, clearly
illustrate the transformative potential of MEC-SAGIN inte-
grations. These scenarios demonstrate how MEC significantly
enhances system responsiveness, resilience, and efficiency,
particularly in environments characterized by limited terres-
trial coverage or stringent latency requirements.

However, several critical challenges persist, notably dy-
namic resource scheduling, energy constraints, security and
privacy vulnerabilities, and seamless cross-tier coordination.
These issues require further investigation and innovative
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solutions, particularly through advanced methodologies in-
corporating artificial intelligence, blockchain, and quantum
technologies.

Finally, this survey identifies promising research direc-
tions, advocating for advancements in intelligent resource
scheduling using digital twins and reinforcement learning,
robust security frameworks leveraging blockchain and quan-
tum cryptography, energy-efficient operations via renewable
energy integration, and unified standardization efforts for
seamless interoperability across SAGIN layers.

In summary, MEC and SAGIN integration represents a
compelling and necessary evolution toward ubiquitous, in-
telligent, and resilient communication and computation in-
frastructures. Continued research and development in this
field will undoubtedly play a critical role in shaping future
telecommunications landscapes, ultimately delivering un-
precedented levels of connectivity, intelligence, and reliability
on a global scale.
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