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Abstract: Seam-carving is a relatively new image re-targeting technique. While it can be used for legitimate image re-targeting,
it also provides a tool for malicious purposes, such as object removal. However, existing methods either classify images in
blocks or try to learn faint seam traces from forgeries directly, with low accuracy in the former and inefficiency in the latter.
To break these limitations, a new seam-carving localization method is proposed in this research, which can be used to solve
the correlation forensic authentication tasks based on seam-carving. JPEG compression brings regular block artifacts to the
image, which can be a suitable medium for seam-carving localization. Therefore, we design a multi-block network structure
and propose an effective training strategy to localize seams in images. First, we extract the block artifacts hidden in the image
self-supervised; second, we input the location map of the seams as guidance to localize the seams from the corrupted properties.
As expected, the network can quickly localize the seams with a small amount of training data. By utilizing this prior, we achieve
the detection of object removal based on seam-carving. Extensive experiments demonstrate the feasibility and effectiveness of
the proposed method.
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1 Introduction
In the 21st century, facing various electronic products, such as
laptops, smartphones, smartwatches, and so on, re-targeting
one image to fit different screen sizes is becoming more
and more attention. The basic image re-targeting techniques
mainly include linear scaling and center cropping, and they
are widely utilized in various applications. However, be-
cause these basic methods pay attention to handling geometric
transformations, they harm the image’s visual effect. In 2007,
Avidan [1] proposed a content-aware image re-targeting tech-
nique named seam-carving,and compared with basic image
re-targeting methods, the seam-carving algorithm keeps the
main content of the image unchanged and discards unim-
portant background information.To achieve better results, the
seam-carving algorithm has been continuously optimized[2–
6].

Due to the good performance of seam-carving, this tech-
nique has been integrated into many image editing appli-
cations (e.g., Adobe Photoshop and ImageMagic),and even
in the medical field, where it has been utilized for optimiz-
ing mammogram images[7]. Similarly, it has been used for

various malicious purposes, such as shrinking or even re-
moving content unfavorable to the tamperer or highlighting
areas favorable to the tamperer[8]. The forgery based on the
seam-carving may not leave visual clues visible to human
eyes [1, 9, 10]. Therefore, the detection and location of the
seam-carving forgery have become a necessary topic in image
forensics.

Although there has been extensive research on seam-
carving, most of them cannot be used for seam-carving
forgery detection. The idea of existing methods [8, 11–19]
is the same, by extracting some features to classify whether
an image has experienced seam-carving or not, they focus on
the classification of the legitimate re-targeting image. Indeed,
it is more meaningful to detect and localize the removal of
malicious objects by seam-carving. However, object removal
based on seam-carving is not easy to detect,since the general
object removal algorithms utilize image inpainting algorithms
to fill the blank regions caused by removing the object. Many
detection methods locate the removed object by exploring
the inpainting algorithm [20–22]. They are not applicable to
detect the removed objects operated by seam-carving.
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Even though the seam-carving image re-targeting tech-
nique performs well, it still inevitably corrupts the correlation
between adjacent pixels of an image, such as the consis-
tency between pixels, etc. JPEG (Joint Photographic Experts
Group) compression brings regular block artifact properties to
the image, which can be a suitable medium for seam-carving
localization. According to the summarization of requested im-
ages through the forensic website over two years [23], the
JPEG format was found to be the most requested (77.95%),
followed by PNG (20.67%). Since the blocking artifact is the
natural property of JPEG images, it has been used in many
forensic identification tasks [24–28]. Therefore, we utilize
this property as a medium to detect and localize the seam op-
eration in the images that undergo JPEG compression. Our
main contributions are summarized as follows:

• A new pixel-level seam-carving localization method is pro-
posed, which relies on the image’s properties and can
detect malicious operations detection, especially object
removal based on seam-carving.

• A multi-block network structure was designed, composed
of four blocks with different unique characteristics and pur-
poses, which combine the residual structure and attention
mechanisms.

• To capture the traces caused by seam-carving, we propose
an effective training strategy: first, we extract the proper-
ties hidden in the image self-supervised; second, we input
the location map of the seams as guidance to localize the
seams from the corrupted properties.

• Compared with the existing methods, the proposed method
achieves better localization precision and generality.

The rest of this paper is organized as follows: Section II
devotes itself to the theoretical concepts of the seam-carving
technique. Section III describes our proposed method, which
includes the theoretical analysis of the JPEG blocks and
detailed information about the network. Section IV demon-
strates ablation studies and comparative experiments and
discusses them in Section V. Finally, Section VI draws con-
clusions and suggestions for future work.

2 Related Work
2.1 Seam-carving

The definition of a seam is a set of connected pixels that
traverses the image in the vertical (from top to bottom) or
horizontal (from left to right) layout. Those pixels are lo-
cated in the less important areas in the images selected by
an energy function. Seam-carving is a content-aware image
re-targeting approach that includes seam-removal and seam-
insertion, which reduce and enlarge the size of an image by
removing or replicating these low-energy seams.

Avidan first proposed a strategy for finding the seam with
a minimum total energy value in 2007 [1] and defined the
function of the energy value of a specific pixel in the seam as
shown in Eq. 1.

e(I) =
∣∣∣∣ ∂

∂x
I
∣∣∣∣+ ∣∣∣∣ ∂

∂y
I
∣∣∣∣ . (1)

A candidate vertical seam in the image I can be expressed
as {I (si)}N1

i=1. The optimal one seam s∗ is the seam with the
lowest energy cost, which is defined by the following formula.

s∗ = min
s

{E (s)}= min
s

{
N1

∑
i=1

e(I (si))

}
. (2)

The optimal seam s∗ can be found using a dynamic pro-
gramming algorithm. For a particular pixel, there are only
three pixels in the previous row that can be connected to it,
whose coordinates are (i−1, j−1), (i−1, j) and (i−1, j+1).
We denote the cumulative minimum energy of the seam
from the first row to (i, j) by M(i, j). Then, the minimum
cumulative energy M(i, j) at (i, j) can be calculated by Eq. 3.

M (i, j) = e(i, j)+ argmin

(M (i−1, j−1) ,M (i−1, j) ,M (i−1, j+1)) .
(3)

Using Eq. 3. to calculate downwards from the second row of
the image, when calculating the cumulative minimum energy
for each pixel position in the last row is complete, we select
the smallest value from the last row and record its coordinates.
Then, we backtrack to find the low-energy pixel connected
to this pixel, and finally, we can get the seam with minimum
total energy. After removing a seam, the cumulative energy
should recalculate, and we repeat the stages until the image
reaches the targeted size.

2.2 Seam-carving Detection

Seam-carving has been used for a variety of malicious pur-
poses with widespread use of it, and the trend of such illegal
operations is growing [8]. Therefore, researchers have pro-
posed many relevant methods, which can be divided into
traditional and neural network-based methods.

Traditional methods determine whether an image has
undergone a seam operation through the human-designed fea-
tures, and its classification accuracy also depends on the
quality of the feature extraction process. The laws that hu-
mans formulate often have many limitations. Among tradi-
tional methods, Lu et al. verified whether pre-embedded SIFT
(Scale Invariant Feature Transform) features changed [11].
Ryu et al. extracted three features for classification based on
energy, seams, and noise [12]. Based on [12], Yin et al. pro-
posed to use the information of the difference of LBP values
on both sides of the seam [13]. Lu et al. proposed a Lo-
cal Neighborhood Magnitude Occurrence Pattern (LNMOP)
and used its feature histogram for detection [14]. Liu et al.
analyzed the domain joint density of the coefficients by Dis-
crete Cosine Transformation (DCT) [8]. Wattanachote et al.
extracted blocks Characteristics Matrix (BACM) intra-block
and inter-block histograms to measure JPEG image blocks
symmetry changes [15]. Liu et al. combined information from
spatial and frequency domains to find detectable features
based on a feature mining approach [16, 17]. Some methods
use steganography to determine whether the information in
the image has been tampered with [29–32].

With the rapid development of deep learning, many neu-
ral network methods have been proposed. Nataraj et al. built
one detector for classification, the other to detect patches that
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have been seam carved for patch-level localization [33]. Gu-
davalli et al. proposed a method to learn the faint seam traces
from seam-carving images directly [34]. [18] utilized the neu-
ral network to find the weak seam information in an image,
which is the classification of forged images, however, the pro-
posed method can localize the seams in the image, which use
for the detection of malicious operations, especially object
removal.

3 The Proposed Method
Although there are many studies on seam-carving, most of
them just classify whether an image has undergone seam-
carving or not [14–17], which can not be used for the de-
tection of malicious operations, such as object removal. To
tackle complex tamper detection problems, we need to realize
seam-carving localization. Finding the location of the seam-
carving directly from the image is a difficult task. Fortunately,
some regular properties of the image can help us capture these
corruptions. JPEG compression is a widely used image tech-
nique with unique properties and distributions, as shown in
Figure 1. (a), we compress the original image using differ-
ent quality factors (QF) and observe the regions in the red
box, we can see that the block artifacts (BA) appeared, and
the smaller the compression quality factor is, the more ob-
vious the block artifacts are. The properties in JPEG images
provide a good opportunity for us to localize seam-carving.
As shown in Figure 1. (b), if we randomly remove or insert a
seam from the JPEG image, all the 8×8 distribution that the
seam passes through will be corrupted, resulting in obvious
misalignment. So we do a further investigation of the JPEG
compression block artifacts and design an effective training
strategy to realize the localization of seam-carving. By utiliz-
ing this prior, we simulate the change of block artifacts when
the JPEG image undergoes seam-carving, as shown in Figure
1. (c-d), it is difficult to find the traces of seams on the seam-
removal (SR) or seam-insertion (SI) images, but the seams
seriously corrupt the 8× 8 distribution, we can even see the
outline of the seams from the position of the corrupted block
artifacts, which can be a medium for seam-carving localiza-
tion. However, it is almost impossible to observe the change
of this property directly from the image. If we can extract it
from the image, as in Figure 1. (d), seam-carving localization
will no longer be difficult.

3.1 Problem Formulation

JPEG compression is a lossy compression where the image
is divided into 8×8 non-overlapping blocks and compressed
separately, which brings block artifacts to the compressed
image and degrades the visual quality. Suppose f (i, j) is
the pixel matrix of an 8 × 8 image block. f (i, j) will be
transformed by

f
′
(i, j) = iDCT

(⌊
DCT ( f (i, j))

Q(i, j)

⌋
·Q(i, j)

)
, (4)

where DCT () is a two-dimensional Discrete Cosine Trans-
form (DCT), ⌊·⌋ means rounding down, and Q is the JPEG
quantization matrix given by Joint Photographic Experts

Group (JPEG). If the rounded-off part is regarded as the
truncation error e(i, j) ∈ (0,Q(i, j)) caused by quantization
procedure, Eq. (4) can be rewritten as

f
′
(i, j) = iDCT (DCT ( f (i, j))− e(i, j)). (5)

Since iDCT () transformation satisfies the linear in-
variant property, the compressed block f ′(i, j) = f (i, j) +
iDCT (−e(i, j)), and we can denote the compressed image as

IQF = I +EQF , (6)

where EQF represents iDCT (−e) of all the 8 × 8 blocks,
which causes the block artifacts of JPEG image.

(a1) TIFF (a2) QF=90 (a3) QF=70 (a4) QF=50

(b1) Blocking Artifact before SC (b2) Blocking Artifact after SC (b1) BA before seam-carving (b2) BA after seam-carving

(d1) QF=90 (d2) QF=70 (d3) QF=50

(e1) SR (TR=1%) (e2) SR (TR=1%) (e3) SR (TR=1%)

(f3) SI (TR=1%)(f2) SI (TR=1%)(f1) SI (TR=1%)

(d3) BA of (c3)(d2) BA of (c2)(d1) BA of (c1)

(c1) Original image

(a1) Blocks before seam-carving (a2) Blocks after seam-carving

(a1) Original (a2) QF=50 (a3) QF=30 (a4) QF=10

(c2) Seam-removal (SR) (c3) Seam-insertion (SI) 

Figure 1: The block artifacts (BA) distribution of JPEG
images and the influence of seam-carving on this prop-
erty. (a2-a4) The original image was compressed with
QF = 90,70,50. (b1-b2) are the distribution of BA before
and after seam-carving, respectively; the red line indicates
seam-removal (SR), and the green line indicates seam-
insertion (SI). (c1-c2) are the original JPEG images, SR and
SI images, (d1) is the block artifacts we simulate from (c1),
and when we perform seam-removal and seam-insertion on
(c1), we do the same operation at the corresponding position
of (d1) to get (d2-d3).

In recent years, many block artifact removal methods
based on convolutional neural networks have been developed
with great success [35–37], their goal is to remove unwanted
artifacts in the compressed image IQF . In contrast to these
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methods, our goal is to remove the image content I and extract
the block artifacts EQF by

argmin∥G(IQF ;θG)− (IQF − I)∥2
F , (7)

where θG represents the set of all neural network parame-
ters G. The network continuously narrows the gap between
its output G(IQF ;θG) and block artifacts EQF by inputting the
original image I and the compressed image IQF in pairs, fi-
nally, it can extract EQF directly from the JPEG image. Then
we input the seam-carving image IS and its corresponding
seams location map M in pairs to guide the network:

argmin∥G(IS;θG)−M∥2
F , (8)

which will localize the seams by the corrupted 8×8 distribu-
tions of block artifacts EQF , and then output the localization
map of the seams G(IS;θG).

3.2 Network Architecture

To enable the network for the task in Eq.7 and Eq.8, we metic-
ulously design a multi-block network structure, which com-
bines the residual structure [38] and attention mechanisms
[39], and we prevented the weak features from disappearing
by excluding the pooling layer, inspired by the insight and ap-
proaches in [40, 41]. The proposed network can be expressed
as

y = G(x;θG)

= B(n4)
4

(
RA(n3)

(
B(n2)

2

(
B(n1)

1 (x)
)))

,
(9)

where x,y denote the input and output of the network re-
spectively, B1(·), B2(·), RA(·) and B4(·) denote four kinds of
blocks, and nth is the number of n-th block.

The first block B1(·) is composed of 64 convolutional
(Conv) filters of size R3×3×1 with stride 1, followed by
the rectified linear unit (ReLU) as an activation function for
non-linearity, and the number n1 was set to 1. It has been
demonstrated in [42] that batch normalization (BN) [43] can
speed up and stabilize the training process. For block B2(·),
64 Conv filters of sizeR3×3×64 with stride 1 are used, the BN
layer is added between Conv and ReLU, and the number n2
was set to 2. B1(·) and B2(·) blocks extract shallow features
from the input data.

To improve the ability to extract forgery-related features,
we further enhance the structure by combining the residual
structure and the attention mechanisms (RA), rather than sim-
ply using ordinary convolutional layers. The residual structure
Res(·) can be formulated as:

r = Res(min) = min +B(2)
2 (min) , (10)

where min and r denote the input and output of the Res(·),
the feature map is reused by using the skip-connection,
which can alleviate the vanishing gradient problem that ad-
versely affects the convergence of deep-structured CNNs. The
attention mechanism we use is the Spatial Channel Squeeze-
and-Excitation (SCSE) [39], which consists of two attention
branches, the spatial squeeze and channel excitation (SSE)
and the channel squeeze and spatial excitation (CSE). The
core idea of squeeze and excitation is that the network learns

the weights ws,wc of the features according to the loss, moti-
vates the important features, and suppresses the unimportant
ones so that the network model achieves better results,

mout = RA(min)

= SCSE (Res(min))

=Conc(SSE (r) ,CSE (r))
=Conc(r⊙s ws,r⊙c wc) ,

(11)

where mout denote the output of the RA(·), ⊙s and ⊙c indicate
the spatial-wise and channel-wise multiplication respectively,
Conc means the concatenate operation.

The output of SSE is the weight matrix ws ∈RH×W that
signifies the network which features at which position on the
H ×W dimension is more important, and the network uses
the weights at different positions to reward or penalize the
corresponding feature, which can be implemented by the con-
volution layer, and the parameters in it are updated as the
gradient is back-propagated.

The output of CSE is a weight vector wc ∈ R1×1×C that
signifies the network which features at which channel on the C
dimension are more important. The generation of the weight
vector wc is relatively complicated. First, we need to convert
r into a R1×1×C vector v by a global average pooling layer,
the kth value in the vector v is calculated as follows

vk =
1

H ×W

H

∑
i=1

W

∑
j=1

r(i, j,k) . (12)

and for vectors, we usually use fully-connected layers (FC) to
learn the relationships between the features,

wc = ReLU (FC2 ∗Sigmoid (FC1 ∗v)) , (13)

where FC1 ∈R
C
h ×C and FC2 ∈RC×C

h are the weight matrix
of two fully connected layers respectively, h is the number
of hidden nodes in the middle layer, and we set it to 16 in
our experiments. When we concatenate the output of SSE and
CSE, the channels of the feature map increase from 64 to 128,
then we use 64 Conv filters of sizeR1×1×128 to downscale the
number of channels to 64.

The last block B4(·) is composed of one Conv filter of size
R

3×3×64 with stride 1, which is used to reconstruct the out-
put, and the number n4 was set to 1. The four blocks have
different unique characteristics and purposes, resulting from
our optimal combination under multiple attempts. Extensive
experiments have proved that the proposed network structure
can effectively achieve the learning task and reach the final
goal: seam-carving localization. As shown in Figure 2, we av-
erage the multi-channel feature maps output from each block
and then visualize them to observe their functions. As we ex-
pected, B1(·) and B2(·) extract the shallow features of the
image, such as the edges and details. RA(·) block is the ker-
nel of the proposed network structure. In the feature maps of
RA(1) and RA(2), we can see noticeable block artifacts as well
as the outline of seams, and after RA(3−5) network finds more
precise seam locations from the corrupted blocks and finally
outputs localization results through B4(·).
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Figure 2: Structure of the proposed method. The training strategy consists of two steps: self-supervised training for the net-
work to extract JPEG block artifacts,and end-to-end training for the network to realize pixel-level localization of seams. The
visualization of the four blocks in the proposed network structure, B1(·), B2(·), RA(·), and B4(·).

3.3 Seam Carving Localization

Although the JPEG block artifact is a suitable property for de-
tecting and localizing the seams, it is difficult to estimate the
error EQF directly from a picture due to the lack of the original
image. Deep learning is a powerful feature learning method
for learning the relationships and laws implicit in the data. So,
we use deep learning-based methods to learn the truncation
error EQF in images and then analyze the effect of different
quality factors on them.

According to Eq. 10, error EQF is the fundamental cause
of the block artifact of JPEG compression, so we hope to re-
move the influence of image content through deep learning to
learn the distribution of the truncation error EQF . For mak-
ing the network learn the error EQF directly from the input
compressed image IQF , we design the loss function as fellow

L1 (θG) =
N

∑
i=1

∥G(IQF [i];θG)− (IQF [i]− I[i])∥2
F , (14)

where N indicates the batch size of the input. In JPEG com-
pression, since the RGB image is converted to YCbCr color
space and then compressed in separate channels, and the Y
luminance channel contains the most information, we select
the Y channel for learning the compression error EQF .

Finally, the network can learn the distribution of the er-
ror EQF with different QF and extract JPEG compression
block artifacts directly from the images. In Figure 3. (a2-a4),
we compress an image I by using different QF and subtract-
ing the compressed images IQF in the green boxes from the
uncompressed image in the red box. Then we extract block

artifacts from the compressed images IQF shown in Figure 3.
(b2-b4), we can see that G(IQF) owns the same distribution as
EQF .

By analyzing Figure 1, we know know that the block
artifacts extracted from the seam-carving images have the cor-
rupted 8× 8 blocks distribution; however, we can’t observe
such a weak difference by the human eye, so we have to uti-
lize some feature extraction tools. The blocks characteristics
matrix (BACM) [44] calculated the differences within a block
and spanning across a block boundary, which can measure
the symmetrical property of the 8 × 8 block artifacts intro-
duced by JPEG compression. To verify that seam-carving
does have serious corruption to block artifact properties, we
randomly select 500 images from the Alaska [45] dataset,
and for every ten images of them, we use a quality factor
QF = {90,70,50} for JPEG compression. Next, we perform
seam-removal and seam-insertion with a tampering rate (TR)
of 1%, which means reducing or enlarging the width of the
image size by 1%, then extract the block artifacts in the
JPEG images through the network and use BACM to ex-
tract the characteristics matrix. From Figure 3. (a), we can
see that the characteristics matrix of the JPEG images shows
a diagonal symmetry, and when the QF value is smaller,
the symmetrical property is more obvious. In contrast, the
properties of the seam-removal and seam-insertion images
disappeared. The results demonstrated that seam-carving is
corrupt to 8 × 8 blocks on the JPEG image, and the pro-
posed network structure and training strategy can capture this
property very well.
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(a1) Image I

(b1) Image IQF  

(a4) E50(a3) E70(a2) E90

(c1) QF=90 (c2) QF=70 (c3) QF=50

(d1) SR (TR=1%) (d2) SR (TR=1%) (d3) SR (TR=1%)

(e3) SI (TR=1%)(e2) SI (TR=1%)(e1) SI (TR=1%)

(b4)  G (I50)(b3) G (I70)(b2) G (I90)

Figure 3: The true and learned JPEG compression traces,
and the heat maps of the extracted 8 × 8 BACM charac-
teristics matrix. The image I was compressed to obtain the
compressed image IQF=90,70,50. (a2-a4) are the truncation er-
rors EQF=90,70,50 generated by subtracting the red box in the
image I from the green box in IQF . (b2-b4) are the learned
JPEG compression trace JQF=90,70,50 from the corresponding
JPEG images IQF=90,70,50. (c1-c3) are the heat maps for im-
ages with QF=90, 70, and 50, respectively. (d1-d3) are the
heat maps for QF=90, 70, and 50 at the tampering rate of 1%
seam-removal. (e1-e3) are the heat maps for QF=90, 70, and
50 at the tampering rate of 1% seam-insertion.

As shown in Figure 1. (a), if we randomly remove and
insert a seam from the JPEG image, all the 8× 8 blocks dis-
tributions of the blocks that the seam passes through will
corrupt, resulting in misalignment. If we give a little guidance
to the network, it will learn the regularity of the seam posi-
tions quickly. Therefore, we record the coordinates of each
seam when we use the seam-carving technique [1] to scale the
images, then mark these coordinates. But there is a problem:
for seam insertion, we can mark the inserted seam coordi-
nates one by one, while for seam removal, we cannot mark
the removed seams, so we mark both the left and right neigh-
bor coordinates. In this way, we get the seam-carving forgery
and its corresponding seams location map in pairs, and we in-
put both images to guide the network in localizing the seams

in the corrupted blocks. Our training goal is to minimize the
loss between the network output location map and the ground
truth M, which is defined as follows:

L2 (θG) =
N

∑
i=1

∥G(IS[i];θG)−M[i]∥2
F , (15)

where N is the number of input pairs; G(IS[i];θG) and M[i]
are the ith network output localization map and ground truth
map, respectively.

4 Experiments
We propose a seam-carving localization method based on the
block artifacts and conduct extensive experiments to eval-
uate the feasibility and effectiveness. In this section, we
provide implementation details, experimental analysis, and
object removal detection based on seam-carving.

4.1 Dataset

In the experiment, we use several datasets for the three dif-
ferent tasks. To extract JPEG compression block artifacts,
we randomly select 200 TIFF-formated images from the
ALASKA [45] dataset and randomly crop 12800 48×48
patches. We combine horizontal flips and rotations (90, 180,
and 270 degrees) for data augmentation, increasing them to
76,800 patches as our training set.

For the seam-carving localization, Uncompressed Color
Image Database (UCID) [46] and UCUS [15] datasets are
used for training and testing. We randomly selected 1024
images from the UCID data set as the training set, and the
remaining 314 images combined with the UCUS dataset to
form the test set, a total of 1323 images. In the experiment, we
mention different tampering rates (TR) of seam-removal and
seam-insertion. Take 1% as an example, suppose the image
size is 512 × 384 pixels, 1% vertical seam removal (inser-
tion) rate means the width size was reduced (enlarged) by 1%
resulting in the image size becomes 507× 384 (517× 384)
pixels.

For object removal forgery localization, since we use
seam-carving to remove the object from the pristine image
requires the mask corresponding to the object, we create an
object removal dataset (OR-COCO) using the COCO dataset
[47], which is a dataset with masks for multiple tasks, such as
segmentation, localization captioning, etc., the forged images
automatically created by removing the object corresponding
to the masks based on seam-removal.

4.2 Implementation Details

For the extraction of JPEG compression block artifacts, the
network’s batch size is set to 128, and patches within a batch
randomly select the quality factor QF in [50, 100] for com-
pression. The Adam optimizer was used with a learning rate
of 0.001.

The batch size was set to 4 for the seam-carving localiza-
tion, and the optimizer was still Adam with the seam learning
rate. Because the network has already learned the block arti-
facts property, which provides good features for seam-carving
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localization, the network can achieve good localization results
by several epochs.

4.3 Evaluation Metrics

We select several evaluation metrics to illustrate the proposed
method’s effectiveness better. To extract JPEG compression
block artifacts, we used peak signal-to-noise ratio (PSNR) to
measure whether the network can extract correct block ar-
tifacts. If JPEG compression errors EQF can be effectively
extracted, according to Eq. 10, we can improve the quality of
the image by removing EQF and improving PSNR. The com-
pressed image IQF becomes I′ after removing the blocks, and
then the PSNR value of I′ and the original image I can be
calculated by Eq. 16 and Eq. 17.

MSE =
1

h×w

h−1

∑
i=0

w−1

∑
j=0

[I (i, j)− I′ (i, j)]2, (16)

where MSE means Mean square error, h,w denotes the height
and width of the image, respectively.

PSNR = 20 · log10

(
255√
MSE

)
. (17)

We can regard the seam-carving localization output as a
binary classification. Pixels belong to the pristine (negative)
or seams (positive) class. All performance metrics rely on
four basic values, TP (true positive): positive pixels predicted
positive; TN (true negative): negative pixels predicted neg-
ative; FP (false positive): negative pixels predicted positive;
FN (false negative): positive pixels predicted negative. How-
ever, there are many more negative than positive pixels for
seam-carving localization, and the incorrectly predicted pos-
itive pixels affect very little on accuracy. To emphasize the
positive class, we used Precision (P) and Recall (R) to avoid
false alarms, Precision is the ratio of the correctly detected
areas to all detected regions, and Recall is the ratio of the cor-
rectly detected areas to the tampered regions in the ground
truth, defined as:

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

. (18)

Precision and Recall are both indicators for evaluating
model performance, but their focus is different, so the two
quantities are summarized in a single index by their harmonic
mean, the F1 measure

F1 =
2×Precision×Recall

Precison+Recall
×100%, (19)

To assess performance effectively, we consider all three mea-
sures: Precision, Recall, and F1.

4.4 Performance of Seam-carving Localization

This section presents the localization results of seam-removal
and seam-insertion in JPEG format. The proposed method
performs pixel-level seam localization and achieves satisfac-
tory results. We train and test the seam-removal and seam-
insertion with tampering rates of 1%, 2%, 5%, 10%, and their

mixtures (M%) under the quality factors of 90, 70, and 50.
The localization results of seam-removal and seam-insertion
are recorded in Figure 4. In Figure 4, we give the P, R, and F1
values for seam-removal and seam-insertion localization. The
colors indicate training on different tampering rate datasets,
and the horizontal coordinates indicate the tampering rate of
the test set.

By comparing the localization results of seam-removal
and seam-insertion, we can conclude that the precision of
seam-removal localization is higher and more stable than
seam-insertion, and the training set greatly influences the
localization result. On this issue, seam-carving and seam-
insertion have their characteristics. For the seam-removal,
training with the tampering rate of 10% (black) data will
achieve better localization results, while the tampering rate
of 2% (red) is more appropriate for the seam-insertion. For
different tampering rates, when the tampering rate is low,
the network learns less knowledge from the samples, so
the metric of localization is relatively low. However, when
the number of seams is too large, the 8× 8 block distribu-
tion of the JPEG images is severely broken, and some basic
knowledge cannot be learned.

From the experimental results, we can see that the pro-
posed method can obtain effective pixel-level localization
results using a small amount of train data. For different com-
pression quality factors, even when the quality factor is 90,
the proposed method can still accurately detect the vast ma-
jority of the area of the seams, which shows that the network
can effectively extract block artifacts from JPEG images. The
seams can be easily localized when the distribution of the
8×8 block is corrupted. Although the proposed method is not
a classification task, the high-precision localization results al-
low us to determine whether an image has been seam carved,
even if there are only a few seams. A better insight into the ac-
tual quality of results can be gathered by the visual inspection
in Figure 5.

Table 1: The cross-validation F1 values across different qual-
ity factors.

test
train

90 70 50 QF mixed

Seam-removal
90 74.26 54.17 40.81 74.62
70 77.64 85.58 82.04 82.21
50 77.73 85.07 85.89 82.81

QF mixed 76.55 74.94 69.62 79.87
Seam-insertion

90 73.59 69.51 59.84 77.13
70 70.18 77.13 73.88 75.22
50 67.11 73.98 74.54 71.76

QF mixed 70.29 73.54 69.42 74.71

To verify the generalization of the proposed seam-carving
localization method, we perform cross-validation on different
quality factors. For seam-removal, we use data with the tam-
pering rate of 10% as the training set, then we fix the quality
factor and test on datasets containing different quality factors,
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P (QF=90)

P (QF=70)

P (QF=50)

R (QF=90)

R (QF=70)

R (QF=50)

F1 (QF=90)

F1 (QF=70)

F1 (QF=50)

P (QF=90)

P (QF=70)

P (QF=50)

R (QF=90)

R (QF=70)

R (QF=50)

F1 (QF=90)

F1 (QF=70)

F1 (QF=50)

(a) Seam-removal (SR) (b) Seam-insertion (SI)

Figure 4: The Precision, recall, and F1 values trained on seam-removal and seam-insertion datasets with different tampering
rates. We trained and tested with three different compression quality factors: 90, 70, and 50. Each line indicates the training
using the dataset with that tampering rate, the horizontal coordinates indicate the test results on tampering rates of 1%, 2%,
5%, and 10%, and M% indicates the mixture of these four tampering rates.
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Figure 5: Localization results for seam-removal and seam-insertion with four tampering rates of 1%, 2%, 5%, and 10% under
three compression quality factors of 90, 70, and 50, we test the situation with different tampering rates and different quality
factors.
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while for seam-insertion, we use the dataset with the tam-
pering rate of 2% for training to perform the same test, the
experimental results are recorded in Table 1. We can conclude
from the crossover experimental results that the 8× 8 block
artifact distribution of JPEG images extracted by the network
has a strong generalization property. Even if only one quality
factor of the block artifacts is learned, the network can apply
to other situations.

4.5 Ablation Study

To verify the effectiveness of the proposed network structure
and training strategy, we perform many ablation experiments
for the extraction of block artifacts and the localization of
seam-carving, respectively. For JPEG block artifact extrac-
tion, according to Eq. 10 and Eq. 7, a JPEG image IQF can
improve image quality by removing blocking artifacts (Im-
age restoration) if the network can achieve the extraction task
effectively.

We randomly select 500 images from the Alaska [45]
dataset. For every ten images, we use a quality factor QF ∈
[50,100] for JPEG compression; then we calculate the PSNR
value of the compressed image and the original image, respec-
tively. Next, we input the compressed images into the network
to extract their blocking artifacts. After that, we subtract the
corresponding blocking artifacts from the compressed im-
age for image restoration. Finally, we calculate the PSNR
value of the restore and the original images. The experimen-
tal results are shown in Figure 6. (a), we give an example
in Figure 6 for better understanding. (c), where (c2) was the
JPEG compressed image, (c3) was the extract block artifacts
of the network, and (c4) was the restored result of (c2). We
can see that after image restoration, the influence of block
artifacts is effectively eliminated, and the image quality im-
proves, demonstrating that the network can extract the JPEG
compression error EQF well.

We also demonstrate the effectiveness of the network
structure, as shown in Figure 6. (b), where we test the perfor-
mance of the network after removing different structures. The
baseline means that we only use the convolution operation
in the RA(·) block, which guarantees the network’s compu-
tational power and allows for a fairer comparison. Compared
with the baseline, we can conclude that residual structure and
attention mechanisms can help the network learn better fea-
tures, which facilitates a decrease in the loss function and
achieves higher PSNR values. In Figure 7. (a-d), we show
a seam-insertion image with a tampering rate of 2% and its
ground truth, in Figure 7. (e), we directly input the seam-
carving image and its corresponding seams location map in
pairs to train the network for localization in Figure 7. (f),
we perform seam-carving localization based on the extraction
of the block artifacts. We can see that without the extrac-
tion of block artifacts, it is difficult for the network to find
the location of the seams because the network is more likely
to pay attention to the semantic information rather than the
corrupted distribution of the 8× 8 blocks. By contrast, after
extracting the JPEG compression block artifacts, the network
easily finds the corrupted blocks guided by the seams location
map, and just after one epoch, the network quickly localized
the position of the seams, which demonstrates the correctness

and feasibility of our theory. As the epoch increases, seam
localization becomes more precise. Compared with the base-
line, adding skip-connection can reuse the feature map of the
shallow layers, which makes the network training more sta-
ble; adding the attention mechanism can learn the different
weights of the features according to the loss, motivate the
seams’ features, suppress unimportant background informa-
tion, and improve the performance of seam localization. In
Figure 8.(b), we increased the number of RA(·) blocks from
four to seven, and the number to six provided a significant
localization result on the seam-removal and seam-insertion
datasets and got F1 values of 79.87 and 74.71, respectively.
Still, there was no subsequent significant improvement for
more numbers. Therefore, we choose six RA(·) blocks as our
final network structure.

L
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D

QF
(a)The PSNR values of the compressed and restored images.

L

L
o
s
s

Epoch
(b1)The PSNR of training

Epoch
(b2)The loss of training

(c1) (c2) (c3) (c4)

Figure 6: The results of image restoration. (a) The PSNR
values of the compressed images (purple dots) and restored
images (red dots) with different QFs. (b) The network’s per-
formance after removing different structures (b1-b2) are the
PSNR values and losses on the test set when the epoch is [0,
20], respectively. (c1) The image after JPEG compression.
(c2) The regions in the red box of (c1). (c3) The output of ex-
tracted block artifacts. (c4) The restored result of (c2).

4.6 Performance for Unseen Cases

When we perform seam-carving localization in reality, there
are various unseen cases, such as unseen compression and
tampering rates. It is necessary to maintain good performance
for those forensics. To demonstrate the generality of the pro-
posed method, we performed extensive experiments under
several scenarios. We used the model train on the different
QFs datasets in the cross-validation experiment for the unseen
cases test.
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(e4) epoch = 20 (e1) epoch = 1 (e2) epoch = 5 (e3) epoch = 10 

(f4) epoch = 20 (f2) epoch = 5 (f3) epoch = 10 

(a) Original (d) Ground truth(b) 2% seams (c) SI (TR=2%)

(f1) epoch = 1

Figure 7: The ablation study of the extraction of the block
artifacts (w/o BA). (a) The original image. (b) The image
with 2% seams before removal. (c) The image of 2% seam-
removal. (d) The ground truth is the location map of the
removed seams. (e) We only performed seam-carving local-
ization without the extraction of the block artifacts. (f) We
performed seam-carving localization based on the extraction
of the block artifacts.

4.6.1 Unseen Compression

To simulate the unseen compression cases, we consider the
cases of single and double JPEG compression. For the former,
we randomly select a quality factor QF ∈ [50,100] to com-
press the test dataset; for the latter, because there are tens of
thousands of combinations, it is impossible to simulate every
case, so we perform a random compression again based on the
single one. The experimental results are recorded in Table 2.

Table 2: The F1 values evaluation for seam-carving localiza-
tion under unseen compression cases.

test
train

90 70 50 QF mixed

Seam-removal
Single compression 73.62 70.39 69.81 76.22
Double compression 77.61 82.46 79.68 81.39
Seam-insertion
Single compression 70.58 73.08 69.59 74.84
Double compression 70.98 75.68 72.75 75.51

The experimental results show that the proposed method
has good localization ability for unseen compression cases, is
not only applicable to single compression, but also maintains
stable localization ability for double cases. Because seam-
carving corrupting the 8 × 8 block artifacts distribution in
JPEG images is a common phenomenon, the knowledge and
capabilities learned by the network generalize well across
different compressions. Moreover, we can see from Table 2
that the localization results of double cases are better than
single compression. Because we perform JPEG compression
again based on the single one, the compression degree is
greater, and the image’s block artifacts are more obvious.
This phenomenon demonstrates the proposed seam-carving
localization method based on corrupted block artifacts.

4.6.2 Unseen Tampering Rates

We also test the localization performance of the proposed
method for the seam-removal and seam-insertion at compres-
sion quality factors of 90, 70, and 50 with different tampering
rates, which included smaller tamper rates of 2% and 4%,
and larger tampering rates of 8% and 15%, the experimental
results are recorded in Table 3.

The experimental results show that the proposed method
can achieve good localization results in the cases of differ-
ent tampering rates. Unlike unseen compression cases, unseen
tampering rates have a more significant impact on seam local-
ization performance, especially seam-insertion. The number
of seams in the image increases as the tampering rate in-
creases, however, compared to the seam-removal, the number
of seams in the seam-insertion is high and more difficult to
localize, so there is a decrease in the performance.

Table 3: The F1 values evaluation for seam-carving on un-
seen tampering rates.

TR
QF

90 70 50 QF mixed

Seam-removal
2% 73.06 83.91 85.37 76.64
4% 73.96 85.21 86.09 78.05
8% 74.96 85.68 86.62 79.57

15% 73.31 85.21 87.05 79.67
Seam-insertion

2% 73.85 76.97 74.74 74.87
4% 70.84 74.11 71.48 69.01
8% 65.45 68.74 67.85 64.09

15% 60.31 61.24 63.66 60.47

4.7 Comparison Experiments

Seam-carving localization has been studied extensively. Pre-
vious work [33] divides images into patches with stride 64
for patch-level classification, achieving low localization ac-
curacy. [34] proposes localization using 512× 512 patches,
improving precision but requiring large training datasets and
long training time. Recent work [19] introduces SPNet with
spatial-phase learning for seam carving detection, showing
improved performance but producing band-like localization
results rather than precise seam-level detection. We train and
test seam-removal and seam-insertion with tampering rates of
1%, 2%, 5%, 10%, and mixtures (M%) under quality factors
90, 70, and 50, with results in Table 4.

Experimental results show [33] localization is unreliable,
only vaguely marking seam regions. [34] performs better but
has low precision at negligible tampering rates and signif-
icantly decreased precision when QF becomes large. [19]
achieves moderate performance but does not provide precise
seam localization, producing band-like regions.These meth-
ods require extensive training data and must crop images
into patches due to different sizes between original, seam-
removal, and seam-insertion images, increasing computation
and limiting global information access.
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Figure 8: The seam-carving forgery localization performance of several ablated versions. (a) The variation of F1 values for
the training process of the network with different ablated versions. (b) The effect of different numbers of RA(·) blocks on the
Precision, Recall, and F1 values of seam-carving localization

Table 4: Comparative F1 values of three seam-carving localization methods.

QF QF=50 QF=70 QF=90
Methods [33] [34] [19] Proposed [33] [34] [19] Proposed [33] [34] [19] Proposed
SR 1% 6.9 20.43 8.78 80.31 3.42 4.02 11.01 77.26 3.31 3.16 12.91 61.93
SR 2% 8.4 60.62 14.43 82.81 5.59 16.34 17.67 83.56 5.76 5.74 18.30 70.44
SR 5% 10.74 69.17 22.40 85.67 11.14 44.79 24.68 85.14 11.82 22.08 27.33 68.49
SR 10% 20.97 71.76 32.74 86.89 18.71 62.54 35.79 85.58 19.78 47.38 36.84 74.26
SR M% 15.99 57.24 16.68 86.73 10.16 37.62 21.54 84.83 10.16 42.73 22.98 68.42
SI 1% 3.86 66.68 12.77 78.84 2.22 59.58 10.75 77.91 2.08 21.85 11.31 73.13
SI 2% 6.99 69.67 13.94 74.54 4.43 66.97 15.73 77.13 4.64 43.08 15.65 73.59
SI 5% 14.61 71.64 19.94 74.64 11.16 71.09 20.43 77.56 10.42 58.21 20.02 75.46
SI 10% 27.06 73.04 25.71 78.93 21.85 69.31 25.93 77.55 20.11 63.35 25.09 77.33
SI M% 15.41 35.47 19.28 61.01 9.72 58.87 15.05 66.74 9.21 26.93 19.29 65.03

4.8 Object removal Localization

Seam-carving is a feature in popular image editing software
such as ImageMagic and Photoshop. The ease of access to
these programs makes it easy to forge images. Seam-carving
can easily remove entire objects and leave a large percentage
of pixel values untampered, which poses a challenge to image
forgery detection. When seam-carving is applied to remove
the object from the image, it may lead to the distortion of the
information transmitted by the image, misleading the public.

Object removal based on seam-carving requires us to pro-
vide the corresponding mask for the object, so we create
the object removal dataset OR-COCO based on the COCO
dataset. The COCO dataset is available for multiple tasks,
such as segmentation, localization captioning, etc. The COCO

dataset contains 80 categories, such as a person, a bicycle,
a car, and so on, and the size of most objects is suitable for
removal operations. We select ten images and their corre-
sponding masks from each class and then artificially remove
some targets that were too large, so we obtain 625 unknown
JPEG compressed images and the mask of an object in the
figure. Because the seam-carving algorithm determines the
seams by finding pixels with low energy, we could interfere
with the energy function to determine the seams by assign-
ing the energy of object pixels to a low value, such that
the seams forcibly pass through the object marked for re-
moval. To facilitate the observation, we record the locations of
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these seams. Finally, we complete the production of the OR-
COCO dataset, which includes the original images, the object
removal images, and the seam location images.

(a) The Original images

(b) The masks of removed objects 

(c) The seams before object removal

(d) The object-removal forgery images

(f) Noiseprint

(g) ManTra

(h) Proposed

(e) Ground truth

Figure 9: The detection results in object removal operated by
seam-carving. Noiseprint and Mantra are two state-of-the-art
forgery detection methods that have good detection ability for
traditional object removal forgery.

By observing the distribution and position of the seams
in the OR-COCO dataset, we find some rules for object re-
moval operated by seam-carving. As shown in Figure 9, when
we illegally remove the object from the image, the seams
are forced to pass through the object, which forms an ap-
parent crossover region, even if the object is removed, the
crossover region formed by the seam still exists in the forgery
image. By contrast, if we reduce the image to the same size by
the ordinary seam-removal operation, the seams selected by
minimizing the energy function show a relatively uniform dis-
tribution that avoids damaging the image content as much as

possible. The particular crossover region in the object removal
image provides clues for our detection.

For the traditional object removal method, after removing
an object, an inpainting algorithm will fill the left blank re-
gion. Based on the research of the inpainting algorithm, many
effective detection methods have been proposed [21, 22, 48].
By contrast, object removal operated by seam-carving does
not leave a significant padding area on the image. In compar-
ison experiments, we select two methods that represent the
state-of-the-art in traditional forgery detection and have good
object removal detection ability. Noistprint [49] believes that
different cameras leave inconsistent noise on output images,
and ManTra [50] uses semantic segmentation to locate vari-
ous local forgeries. Through the detection results of the two
methods, we can demonstrate the difficulty of object removal
detection operated by seam-carving, the experimental results
shown in Figure 9.

We can see that general local forgery detection meth-
ods cannot achieve good results for object removal forgeries
operated by seam-carving; they can notice some regions of
removed seams, but this is not enough to detect and local-
ize the position of the removed object. Compared with these
methods, the proposed method can localize the position of
the removed seams in the forgery image at the pixel level.
Then, we can determine whether the image has undergone il-
legal object removal and localize the location of the removed
object.

5 Discussion
In this paper, we design a multi-block network structure and
propose an effective training strategy to achieve pixel-level
seam-carving localization by using a small amount of train-
ing data. Compared with the existing studies, the proposed
method is no longer satisfied with the classification of seam-
carving images but finds the location of seams, which has
more practical value. The proposed method also has the lim-
itation that we relied on the block artifact property, but there
are still some images not experience JPEG compression, for
this case, we need to explore other image properties to as-
sist us in achieving seam-carving localization. In addition, the
proposed training strategy makes it easier for the network to
capture the weak trace of seams rather than the semantics or
colors in the image. The training strategy also applies to other
image forensic tasks, such as image local tampering detection,
where we only need to change the input and its correspond-
ing ground truth of the network. Because if we can find the
innate character of the local forgery, it will be easy to localize
the tampered regions quickly and accurately.

6 Conclusion
Seam-carving is an image re-targeting technique with good
performance, but it also provides a tool for criminals to cre-
ate fake images. Although the seam-carving image does not
appear to change to the human eye, it still inevitably destroys
some image properties. Through theoretical analysis of seam-
caring and JPEG compression, we find that block artifact of
the JPEG compression provides a good opportunity for us
to localize seam-caring. To capture the trace of the seams,
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we design a multi-block network structure to enhance the
learning ability, which combines the residual structure and
attention mechanisms, and we propose an effective training
strategy to localize the seams in images. First, we extract the
properties hidden in the image self-supervised; second, we
input the location map of the seams as guidance to localize
the seams from the corrupted properties. As we expected, the
network can quickly localize the seams from the corrupted
properties without a large amount of training data. Exten-
sive experiments verify the feasibility and effectiveness of
the proposed method. Based on seam-carving localization, we
detect object removal operated by seam-carving, turning the
theoretical assumptions into reality.

In future work, we will mainly focus on two aspects: to
mine more image properties in digital images and use multi-
ple properties to localize seam-carving; the other is to extend
the proposed training strategy to solve more image forensic
tasks.
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