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Abstract: Device-free sensing systems have the potential to enhance human-computer interaction applications, but their effec-
tiveness is highly dependent on the precise placement of devices, which typically requires a significant amount of labor input. To
alleviate this labor-intensive process, we present the Visual Assistant, an inventive system engineered to autonomously generate
environmental maps and accurately identify the locations of Wi-Fi infrastructure for sensing. Our proposed approach employs
commercially available devices in smart homes including the Wi-Fi router, the camera, and the robotic vacuum cleaner. The
Visual Assistant consists of the following two stages: i) the camera mapping stage synthesizes the coordinate systems with re-
spect to the camera and the Simultaneous Localization and Mapping (SLAM) robots; ii) the Wi-Fi mapping stage proposes
the hyperbolic model to inversely pinpoint the positions of undisclosed Wi-Fi infrastructure based on human movement and
the camera. The innovation of this paper lies in the proposed hyperbolic model, which theoretically reveals how to infer Wi-
Fi location based on known user trajectories. We conduct comprehensive experiments to verify the performance of the Visual
Assistant. The results suggest our system can yield centimeter-level and decimeter-level mapping accuracy in camera mapping
and Wi-Fi mapping stages, respectively, marking a substantial stride in the development of device-free sensing systems.
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1 Introduction
1.1 Background and Motivation

Contact-free sensing enables functionalities such as localiza-
tion, fall detection, and respiration detection, playing a critical
role in smart homes and elderly care applications. Among
contact-free sensing systems utilizing millimeter waves, cam-
eras, and other technologies, Wi-Fi stands out as the most
promising due to its ubiquity. However, smart home appli-
cations urgently demand the plug and play characteristics.
For instance, Wi-Fi-based sensing systems can be deployed
without additional manual calibration. The advantages are
twofold: i) From the consumer’s perspective, they can benefit
from smart applications without getting into the technicali-
ties; ii) From the manufacturer’s perspective, they do not need
to train specialized personnel to maintain the sensing system
for consumers.

To solve the aforementioned issues, existing studies [1–
5] have proposed methods to automatically construct Wi-Fi

maps. However, these works suffer from at least one of the
following limitations: i) They necessitate an involved process
of phase calibration. Specifically, we often need expensive
professional equipment, such as power dividers, to connect
the antennas of the transceivers [5]. Unfortunately, not all Wi-
Fi devices have exposed antennas, which would require us to
disassemble the smart devices; ii) They require a non-linear
antenna layout to achieve phase cleaning, but such antenna
layouts are not always available. Moreover, many smart de-
vices are not even equipped with three or more antennas to
form a non-linear antenna layout.

1.2 Basic Idea and Challenges

In this paper, we introduce a novel calibration-free, auto-
mated Wi-Fi mapping system christened Visual Assistant.
This system is engineered not only to establish the rela-
tive configuration of Wi-Fi networks but also to accurately
pinpoint the locations of these networks on authentic architec-
tural floor plans. As shown in Figure 1, the core methodology
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of our Visual Assistant system employs everyday house-
hold devices, specifically Wi-Fi-equipped digital cameras and
robotic vacuum cleaners. These devices collaborate to form
a complete prototype system. The robotic vacuum cleaner
plays a vital role in creating the indoor floor plan, while
the Wi-Fi-enabled digital camera marks the positions of all
Wi-Fi infrastructure within this mapped area. Despite the
promising technological advancements embodied by the Vi-
sual Assistant system, its design and implementation still face
two significant challenges that require further exploration and
mitigation:

Unknown Wi-Fi
Wi-Fi Enabled

Camera
Robot

(a) Camera mapping

Unknown Wi-Fi
Wi-Fi Enabled

Camera
Trajectory

(b) Wi-Fi mapping

Figure 1: (a) a general scenario of camera mappings; (b) the
camera and the user are utilized to acquire the location of un-
known Wi-Fi devices.

Challenge 1: How to establish accurate correspondence
between home scene and floor plan? One primary obstacle
we encounter is the difficulty of utilizing a camera to accu-
rately correlate the physical home scene with the constructed
floor plan. Although the robotic vacuum cleaner is capable
of developing an indoor map, the direct establishment of a
mapping relationship between the scene and the floor plan
remains elusive. To address this challenge, we propose a so-
lution informed by insights gleaned from Perspective-n-Point
(PnP) [6], a fundamental problem presented early in the realm
of Computer Vision. Many well-developed algorithms exist
for solving PnP [7–9]. In essence, our approach employs the
robotic vacuum cleaner and the camera to construct a trans-
formation matrix H that bridges the gap between the ground
plane and the camera photo plane.

Challenge 2: How to map Wi-Fi device locations onto
the floor plan? A seemingly direct approach to this challenge
would be utilizing a camera to identify Wi-Fi devices and sub-
sequently mark their positions on the floor plan. However, this
approach proves to be inadequate when a Wi-Fi device falls
outside of the camera’s field of view, particularly due to Non-
Line-of-Sight (NLOS) conditions. Our strategy to address this
issue involves leveraging the movements of a user within the
monitored space as an intermediary, thus enabling us to infer

the location of Wi-Fi devices beyond the field of view. No-
tably, our theoretical analysis has led us to the development of
a hyperbolic model. The crux of this model is the understand-
ing that, given any two points on a user’s walking trajectory,
the location of the unknown Wi-Fi device should lie along a
hyperbola, with these two points serving as its foci.

1.3 Contributions

In this paper, we make the following key contributions:

1. We propose a hyperbolic model, which theoretically re-
veals how to infer Wi-Fi location based on known user
trajectories. In particular, given the location of the trans-
mitter and the user’s trajectory, the receiver’s position
aligns with the hyperbolas whose foci are any two ran-
domly selected points along the trajectory. Based on our
theoretical discovery, we develop an innovative method to
infer the location of unknown receivers.

2. We create a working prototype of the Visual Assistant.
As depicted in Figure 1, this system harmoniously in-
tegrates SLAM, image analysis, and Wi-Fi multi-modal
information. The experimental results of our system pro-
vide compelling evidence of its efficacy, with up to 80%
of all test scenarios achieving a mapping accuracy within
0.5 meters.

Based on the above technical contributions, we outper-
form existing systems in the following aspects:

1. We experiment with automatic mapping using commonly
available home devices such as a camera, a robot vac-
uum cleaner, and commercial Wi-Fi devices. Our system
does not require additional time-consuming phase calibra-
tion, thus promoting the deployment of Wi-Fi sensing in
ordinary home environments.

2. We harness the full potential of multimodal data, address-
ing the challenge of aggregating information in distributed
systems and achieving complementarity between various
technologies.

The remainder of this paper is organized as follows. We
first discuss related works in §Section 2. Then we present
an overview of our proposed system in §Section 3 while the
design details are illustrated in §Section 4. We implement
and evaluate the proposed system in §Section 5. Finally, we
conclude this paper in §Section 6.

2 Related Work
2.1 Wi-Fi Localization Technique

Due to the ubiquitous deployment of Wi-Fi devices, Wi-Fi
based localization has attracted wide attention [3, 10–16].
These works can be classified into two categories, device-
based and device-free methods.
2.1.1 Device-based Localization System

These systems leverage the integrated sensors within these de-
vices, including accelerometers [17], gyroscopes [18], mag-
netometers [19], and barometers [20], to gather data pertain-
ing to the device’s motion and spatial orientation. By utilizing
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the inherent resources of the device, device-based methodolo-
gies eliminate the need for additional infrastructure, making
real-time tracking more feasible. However, the effectiveness
of these methods may be influenced by various factors, in-
cluding the accuracy of sensors. Moreover, the requirement
to carry devices for indoor localization purposes may cause
inconvenience for certain individuals.
2.1.2 Device-free Localization System

Device-free methodologies eliminate the need for target de-
vices to be equipped with any additional hardware or sensors.
Instead, they strategically leverage the existing infrastruc-
ture within the environment, such as Wi-Fi access points
[13] or Bluetooth beacons [21], to perform indoor localiza-
tion and tracking tasks. By analyzing signal measurements
or noticeable changes in the environmental conditions, these
device-free methodologies [22–25] can deduce the approxi-
mate location of a target device without requiring any active
engagement from the device itself. However, it is notewor-
thy that these device-free sensing systems lack the capacity
to discern user identities. Additionally, these methodologies
often encounter difficulties due to environmental variations
and may face challenges when attempting to simultaneously
localize multiple targets.

2.2 Hyperbolic Models in Wi-Fi Sensing

Hyperbola is an important mathematical concept within the
Cartesian coordinate system, which describes a set of points
whose distance from two fixed points, noted as the foci, differ
a constant value. It can be written as the following equation:

abs(|PF1|− |PF2|) = c, (1)

where P is the point on the plane, F1 and F2 are two foci and
c is a constant number.

Shown in Table 1, in the context of Wi-Fi Sensing, many
prior works have discoveries based on the concept of Hy-
perbola [26–29]. Anvar [26] proposed a hyperbolic model
to address the challenge of accurate indoor localisation.
It proposed a hyperbolic model based on Received Signal
Strength Indication (RSSI) fingerprinting, involving the es-
timation of Time Difference of Arrival (TDOA) between
signals from different transmitters. Specifically, the distance
between ith source (BS) and the mobile receiver is given as:

Ri =
√
(Xi − x)2 =

√
X2

i +Y 2
i −2Xix−2Yiy+ x2 + y2, where

(Xi,Yi) and (x,y) are coordinates of ith BS and mobile sta-
tion respectively. The range difference between base stations
with respect to the first arriving BS is: Ri,1 = v · ti,1 = Ri −R1.
This measurement is transformed into range differences be-
tween base stations, creating a set of nonlinear hyperbolic
equations. Jean [27] discovered a hyperbolic model to local-
ize a transmitter using Received Signal Strength (RSS). The
mathematical model is based on the ratio of the transmitter-
receiver distance between two receivers, with the assumption
that the power of the received signal decreases by the loss
value over the distance, proportional to the distance to the
transmitter. Shown in Figure 2a, the estimated location is
bounced by two pairs of hyperbolas. Liu [28] proposed a hy-
perbolic model to localise a moving receiver using Channel

State Information (CSI). The model is based on the multi-
path effects, using a stationary transmitter and a known signal
reflector. It proposed Zones of Hyperbolas, known as the Dy-
namic Frenel Zones. As is shown in Figure 2c, all hyperbolas
share the same foci, which are the Transmitter and the sig-
nal reflector, and each hyperbola represents a certain CSI
pattern, indicating a candidate area for the unknown moving
receiver. Xu [29] proposed a novel theoretical model, called
the Hyperbolic zone, to reveal the fundamental sensing mech-
anism in Non-Light-of-Sight (NLoS) scenarios. It proposed
the Differential Path Length Change Rate (DPLCR) to resolve
the problem of PLCR discrepancies in both LoS and NLoS
scenarios and consequently derive a hyperbolic zone as:

abs(|QnRx1|− |QnRx2 −|Rx1Rx2|) = n
λ

2
, (2)

where Rx1 and Rx2 are two receivers, λ is the wavelength, Qn
is a point on the nth hyperbola, abs(·) means to solve the abso-
lute value. The equation can be illustrated in Figure 2b, where
the target Qi can be tracked through the Hyperbola zone.

All these models are proposed using only the source of
Wi-Fi signals, either the RSSI, TDOA or the more mod-
ern choice of CSI. The Wi-Fi model alone provides rich
information though, our model utilise the LiDAR sensor,
which provides even richer information, providing even better
performance.

(a) Jean[27] (b) Xu[29]

(c) Liu[28]

Figure 2: Related Work: Hyperbolic Models

2.3 Wi-Fi Mapping

Despite promising applications, the effectiveness of Wi-Fi
sensing is highly dependent on the precise placement of de-
vices, which typically requires a significant amount of labor
input. To address this problem, existing studies [1–5, 30] have
proposed methods to automatically construct Wi-Fi maps.
However, as illustrated in Table 2, they typically use old
models like AoA, failed to enable the rich information of
modern CSI. TriLoc [1] proposes a new antenna layout for
CSI based Wi-Fi localization systems, which can significantly
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Table 1: Comparison of Related Hyperbolic Models

Name Model Name Source Application

Anvar
[26]

Pairs of Hyperbolas RSS Localize a moving transmitter by mul-
tiple receivers.

Jean
[27]

Pairs of Hyperbolas RSSI Localize multiple mobile users by mul-
tiple receivers.

Liu [28] Dynamic Fresnel
Zone

CSI Localize a moving receiver by a trans-
mitter and a reflector.

Xu [29] Hyperbolic Zone DPLCR (CSI) Tracking in NLoS scenarios by
transceivers.

Ours Hyperbolic Cluster CSI & Li-
DAR

Localize multiple receivers by an exter-
nal moving object.

Table 2: A comparison of related Wi-Fi mapping methods.

System Model Modalities Accuracy

TriLoc 2019 [1] ADoA Wi-Fi 0.60m @80%

LocAP 2020 [2] AoA Wi-Fi & SLAM 0.90m @80%

MapFi 2023 [3] AoA+ Wi-Fi 0.74m @80%

VoiceMap 2023 [4] AoA Wi-Fi & Acoustic 0.40m @80%

Ours Hyperbola Wi-Fi & LiDAR 0.40m @80%

reduce the calibration efforts required for large-scale deploy-
ment. The proposed triangular antenna layout can achieve
80% AoA measurement error within 9 degrees for any di-
rection, resulting in promising localization accuracy without
a labor-intensive site survey. LocAP[2] is an autonomous
and accurate system to estimate access point location at-
tributes, antenna placements, and deployment orientation. It
establishes the requirements for reverse localization to ensure
accurate access point locations. LocAP utilizes a calibra-
tion process to estimate the relative geometry of the access
points and the user’s location accurately. The calibration pro-
cess involves measuring the signal strength of Wi-Fi signals
at different locations in the environment and using this in-
formation to estimate the location attributes of the access
points. However, LocAP requires a time-consuming phase
calibration process, which is impractical in real deployment.
MapFi[3] can autonomously map WiFi infrastructure for in-
door localization without the need for labor-intensive site
surveys. The system proposes a general method to estimate
AoA and generate the WiFi map. VoiceMap[4] presents an
autonomous mapping system for voice localization using a
microphone array. The system utilizes a sweeping robot to
explore the environment and a microphone array to localize
the robot, establishing the positional relationship between the
two. Although this methods present better accuracy compar-
ing with others, the nature of sounds still prevents it from vast
deployment since souds require strict environmental setup.

These works suffer from at least one of the following
limitations: i) They necessitate an involved process of phase
calibration. Specifically, we often need expensive profes-
sional equipment, such as power dividers, to connect the

antennas of the transceivers [5]. Unfortunately, not all Wi-
Fi devices have exposed antennas, which would require us to
disassemble the smart devices; ii) They require a non-linear
antenna layout to achieve phase cleaning, but such antenna
layouts are not always available. Moreover, many smart de-
vices are not even equipped with three or more antennas to
form a non-linear antenna layout; iii) They are not practical in
ordinary smart home environment. The process of Wi-Fi map-
ping proposed in these work requires direct communication
between each pair of devices, which is inapplicable in a typi-
cal smart home environment where devices communicates via
routers. Our work, in contrast, only requires direct communi-
cation between a central transmitter and other devices, which
is realistic in the deployment of smart home.

3 System Overview
The workflow of our proposed system is illustrated in Figure
3, which consists of the following two stages:

Camera Mapping Stage. The objective of this stage is to
align the position of the camera with the map generated by
SLAM [31–33] on the robot. Our approach involves using
the camera to capture the relative position in relation to the
robot, followed by designing a transformation matrix H to
translate the 2D locations in the camera’s images to the corre-
sponding locations on the SLAM-generated ground plane for
the subsequent stage. In particular, the robot employs SLAM
to create a comprehensive map of the environment, report-
ing the robot’s locations on the ground plane. Meanwhile, the
camera captures images and leverages a YOLOv5-based [34]
neural network to identify the robot and extract its 2D loca-
tions. Once an adequate number of location pairs are gathered
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Figure 3: Our proposed system consists of two stages of camera mapping and Wi-Fi mapping.

and time-aligned, a specialized Solve-Pnp-based program is
executed using OpenCV [35] to calculate both the camera’s
location and the transformation matrix.

Wi-Fi Mapping Stage. The aim of this stage is to ascertain
the location of the Wi-Fi device on the SLAM map. Our in-
sight is that cameras and Wi-Fi devices can perceive a moving
human from distinct perspectives, and by analyzing the intrin-
sic relationship between different observed features, we can
determine the relative positions between the camera and the
Wi-Fi device. In particular, the camera can capture the user’s
location directly, while the Wi-Fi devices can detect changes
in the signal caused by the reflections on the human body. In
this paper, we conduct a theoretical analysis to demonstrate
that the receiver is situated on the hyperbola with any two user
locations serving as the foci. By leveraging our novel theory,
we are ultimately able to localize the Wi-Fi devices on the
SLAM map.

4 System Designs
This section elucidates the architecture of our system. The
paramount goal is the autonomous alignment of both the cam-
era and Wi-Fi device with the reference coordinates, extracted
from a physical map generated via SLAM. To effectively
achieve this, our explanation is structured into two sequen-
tial yet interconnected phases: the Camera Mapping and the
subsequent Wi-Fi Mapping stages.

4.1 Camera Mapping Stage

The primary focus of the first stage is to ascertain the precise
geographical location of the camera and subsequently com-
pute a transformation matrix. This matrix plays a pivotal role
in converting a given 2D location from an image, captured
by the camera, into its corresponding position on the ground
plane.
4.1.1 Camera Localization

The process of acquiring the precise location of the camera
utilizes the Solve-PnP algorithm, a method that has been re-
searched and validated by studies such as those by [7, 8] and
numerous others. The mechanism of this algorithm is cen-
tered around creating a correspondence between object points

on the ground plane and their corresponding 2D perspective
projection coordinates within an image. Our world coordinate
system is facilitated by a SLAM-based autonomous robot,
which transmits its location information at each time slot
in the form of [Xi,Yi,Zi]

T . To harmonize this with the 2D
location, a neural network, underpinned by the YOLOv5 ar-
chitecture, is trained to recognize the robot and subsequently
extract its 2D coordinates, denoted as [xi,yi]

T . This process
is visually represented in Figure 4. In the concluding steps,
we synergistically combine the intrinsic parameters of the
camera and the distortion coefficients, which are obtained be-
forehand through an established calibration process [36], to
generate the translation vector and the rotation vector. From
these vectors, we can directly calculate the precise location of
the camera as

{
R3×3 = Rodrigues(rvec),

Location =−R−1 × tvec,
(3)

where rvec and tvec represent the rotation and translation vec-
tors, respectively. The function Rodrigues, as proposed by
[37], is used to transform a rotation vector from a compact
3×1 form to a more comprehensive 3×3 form.

Detected: [xi, yi]
T

SLAM: [Xi, Yi, Zi]
T Camera Matrix


fx 0 cx
0 fy cy
0 0 1




DistCoeffecient

tvec

xt
yt
zt




rvec

xr
yr
zr




Yolov5

Detected Point

Figure 4: Camera location is determined according to Eq. 3.

4.1.2 Transformation Matrix

In subsequent stages, the system is tasked with generating
a trajectory that encapsulates a person’s movements within
the environment, exclusively reliant on the camera’s obser-
vational data. Given our scenario, wherein the individual
traverses consistently along the same ground level, the z axis
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can be disregarded. Consequently, the challenge is transmuted
into a task of transforming points from the image plane to
the ground plane. To achieve this, a transformation matrix
denoted by H is necessitated as follows:

H × [xi,yi,1]T = [Xi,Yi,1]T . (4)

This transformation matrix is more widely recognized as
a homography, the solutions for which have been previously
proposed in scholarly literature [38, 39]. This has been en-
capsulated within the OpenCV function findHomography. As
specified in the OpenCV documentation, this function dis-
cerns a perspective transformation between two planes given
multiple pairs of (srcPoints, dstPoints). In the context of our
study, the srcPoints corresponds to points on the image plane,
while the dstPoints represent points on the ground plane.
Therefore, in integrating this process into our system, we dis-
regard the z axis from the reported location data procured
from the autonomous robot during the data collection phase,
yielding a sequence of 2D-2D pairs. Subsequently, the find-
Homography function is called to derive the transformation
matrix H. In later computations, the trajectory can be deter-
mined by the application of Eq. 4. In practical experiments,
however, this is accomplished using the perspectiveTransform
function.

4.2 Wi-Fi Mapping Stage

This subsection is centered around two pivotal components
within Wi-Fi mapping: pedestrian localization and hyperbolic
modeling. The pedestrian localization aspect is designed to
estimate an individual’s location within an environment based
exclusively on camera data, whereas the hyperbolic model-
ing facet leverages CSI to derive Path Length Change (PLC),
subsequently introducing the hyperbolic algorithm for the
mapping of the Wi-Fi device. For a better understanding of
our system’s operations, we will first delve into the details of
PLC before discussing hyperbolic modeling.
4.2.1 Pedestrian Localization

At the core of this study, we aim to precisely map a person’s
trajectory within a predefined environment. To accomplish
this, we first focus on pinpointing the exact point where the
person makes contact with the ground, a point we denote as
the ground point. Our approach involves transitioning this
ground point from the image plane, where it is initially cap-
tured, onto a ground plane, utilizing a transformation matrix
H derived from the camera mapping stage. A fundamental
step in this process is the estimation of the ground point for
each captured frame. A preliminary approach might involve
the application of neural networks, such as YOLOv5, to de-
lineate a bounding box around the person in the image. In this
scenario, the midpoint of the bottom edge of the bounding box
naturally suggests itself as the ground point. However, care-
ful observations reveal that this proposed ground point may
diverge from the actual point of contact with the ground in
certain situations, as illustrated in Figure 5a. This discrepancy
introduces potential errors in subsequent computations.

Yolov5 & Pose

Middle Point

Ground Point

(a) YOLOv5 only

δ

Estimated Ground Point

Ankle

Yolov5 & Pose

Middle Point

Ground Point

δ

(lax, lay)

(rax, ray)

(b) YOLOv5 + pose estimation

Figure 5: Ground point detection. (a) illustrates a scenario
in which the midpoint deviates significantly from the ground
point; (b) demonstrates a combinational method that consid-
erably enhances the accuracy of ground point detection.

In pursuit of accurate location estimation, we augment
our system with insights derived from [40]. This approach
involves the incorporation of an additional pose estimation
modul[41] within our neural network pipeline, which assists
in recognizing the position of the person’s ankles. This en-
hancement enables us to estimate the ground point based not
solely on the bounding box but also on the relative position of
the ankles. In practical terms, we calculate the ground point
G as

G = [(lax + rax)/2, (lay + ray)/2−δ ]T , (5)
where la and ra denote the positions of the left and right an-
kles, respectively. An offset value δ is also computed, defined
as

δ = bbymax −max(lay,ray), (6)
where bbymax is the y coordinate of the bounding box’s bottom
edge. Our improved estimation of the ground point, which is
more accurate, is displayed in Figure 5b. Once the ground
point for each frame has been determined, the person’s move-
ment trajectory within the environment can be established
using the transformation matrix H described above in Eq. 4.
4.2.2 Path Length Change

Wi-Fi tracks a user’s trajectory differently from vision-based
methods, observing changes in reflected path length (PLC).
As seen in Figure 6a, for a transmitter (Tx) and receiver (Rx),
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the reflected path is represented by ∥TxP∥+∥PRx∥. The Fres-
nel zone forms a cluster of ellipses, denoting locations with a
constant reflection path length, with the foci being Tx and Rx.
When people move along, they traverse distinct ellipses, each
associated with a different reflection path length. The calcu-
lation of PLC from raw CSI readings employs the PLCR.
Previous studies, such as [30, 42, 43] detail the process of
converting CSI to PLCR. From [30], we obtain PLCR using

fD =− 1
λ

dL(t)
dt

=− 1
λ

vr, (7)

where fD, vr, and L(t) represent the Doppler Frequency Shift
(DFS), PLCR, and dynamic path length at time t respectively.

Having established the basic idea of PLCR, we will not
delve further into it at this stage. Instead, we will now shift
our focus to the process of transitioning from PLCR to PLC.
To understand its physical implications and importance in
our system, we revisit Figure 6a. As depicted in Figure 6a,
a person (P) resides within a zone. The person’s trajectory is
highlighted in red and its corresponding PLC in ideal situa-
tions is visualized in Figure 6b. It is apparent that the person
moves from P to A in an anticlockwise direction. When the
PLCR is integrated over a certain time span, the result is the
PLC, which represents the number of Fresnel zones that the
trajectory has crossed within that time frame. More specifi-
cally, if Ni is the label for the Fresnel zone at time point i, then
plci j must satisfy:

plci j =
∫ i

j
plcrx dx = Ni −N j. (8)

Consider Ni = ∥PiTx∥ + ∥PiRx∥, where Pi denotes the
location point at time instance i. We can rewrite Eq. 8 as

plci − plc j = (∥PiTx∥+∥PiRx∥)− (∥PjTx∥+∥PjRx∥), (9)

where plci is plci0 and 0 corresponds to the starting time of
the recorded trajectory.

In conclusion, the variation between two PLCs physi-
cally signifies the difference in the sum of distances from
the trajectory to the two Wi-Fi devices at two different time
instances.

−4 −2 0 2 4
x (m)

−4

−2

0

2

4

y
(m

)

Tx Rx

Fellipse
A

Trajectory

P

(a) Fresnel zone

0.0 2.5 5.0 7.5 10.0 12.5
Trajectory (m)

0.0

0.5

1.0

1.5

P
L

C
(m

)

P

A

(b) PLC for the trajectory

Figure 6: Fresnel zone model. (a) shows Fresnel zone model
for PLCR discussed in [30]; (b) illustrates an ideal PLC for
the trajectory.

4.2.3 Hyperbolic Modeling

Once the physical interpretation of PLC is comprehended
within our context, the formulation of the hyperbolic model

becomes relatively straightforward. Taking into account that
the transmitter Tx is securely affixed to the camera, whose
location is already known according to the camera mapping
stage, Eq. 9 can be enhanced as follows:

∥PiRx∥−∥PjRx∥= (plci − plc j)− (∥PiTx∥−∥PjTx∥). (10)

Consequently, as depicted in Figure 7, for any pair of se-
lected points Pi and Pj, given the corresponding plci and plc j
and the location of the transmitter Tx, the unknown receiver
Rx is situated on a hyperbola with Pi and Pj as the foci.
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Figure 7: Hyperbolic modeling. When i and j are selected,
∥TxPi∥ and ∥TxPj∥ are immutable. Thus, revealed in Eq. 10,
the possible locations of Rx, determined by Pi and Pj, follows
a hyperbola with foci at Pi and Pj.

Figure 8a illustrates a scenario in an ideal environment.
When Pi, Pj and Pk are selected, the value of ∥PiTx∥, ∥PjTx∥
and ∥PkTx∥ are immutable. According to Eq. 10, three hyper-
bolas with foci at (Pi, Pj), (Pi, Pk) and (Pj, Pk) respectively are
drawn. The intersection of these hyperbolas is considered as
the estimation of the receiver Rx. In this ideal situation when
errors are eliminated, the estimation perfectly determines the
real location of the receiver. Despite our ideal modeling, er-
rors during actual deployment are unavoidable. As shown
in Figure 8b, in situations where errors are introduced, the
estimated positions can greatly vary, forming a constella-
tion around the receiver’s actual location. In response to this
challenge, we propose a novel approach that leverages the
hyperbolic model in combination with a threshold-based al-
gorithm to mitigate these errors and obtain a robust estimation
of the receiver’s location. Our proposed solution employs a
geometrically intuitive method. As shown in Figure 9, draw-
ing hyperbolas of a larger width increases the probability of
encompassing the receiver’s correct location, despite poten-
tial errors. By delineating multiple hyperbolas of considerable
width, we can pinpoint the area of maximum intersection as
it exhibits the highest likelihood of being the receiver’s ac-
tual location. However, resolving multiple intersections of
hyperbolas demands substantial computational resources. Our
algorithm navigates around this by avoiding the direct solu-
tion of intersections. Instead, it determines the likelihood of
each candidate location by iteratively applying the algorithm
to multiple pairs of foci.

The procedure delineated in Algorithm 1, outlined be-
low, commences by generating a matrix of potential receiver
locations within a preset boundary, specifically, a rectan-
gle extending from the bottom-left corner at (x0,y0) to the
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top-right corner at (x1,y1). Next, it calculates the difference
between the actual PLC, collected from Wi-Fi, and the es-
timated PLC. The estimated PLC is calculated according to
Eq. 11, upon the candidate receiver’s location and the real
position of the transmitter gathered from the camera map-
ping phase. This calculated discrepancy is then assigned to
the variable et . The error metric et is determined via:

et =∑
i, j

F
(
(plci − plc j)−

(
(∥PiT x∥+∥PiRt∥)− (∥PjTx∥+∥PjRt∥)

))
,

(11)

where F(·) represents a threshold-based filter, defined as

F(x) =

{
x, if |x| ≥ threshold,

0, if |x|< threshold.
(12)
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Figure 8: Two situations. (a) In situations devoid of errors,
the intersection point of multiple hyperbolas accurately de-
termines the receiver’s location; (b) When errors occur, the
estimations display significant variations.

In practical terms, the threshold is set manually, based on
experience and judgement, and it remains consistent across
all tests within the same contexts, namely the Office and the
Open-Space scenarios, which will be discussed in detail later
in this paper. Specifically, we establish the threshold for the
Office scenario at 1.1, and set it at 2.3 for the Open-Space
scenario.

Following the computation of errors for each candidate,
the candidates are sorted in ascending order based on the

error. Ultimately, the receiver’s location is estimated by av-
eraging the top 5% of candidates with the smallest errors. In
this way, our hyperbolic algorithm robustly maps the Wi-Fi
receiver. In the next section, we present implementation and
experimental results that demonstrate the effectiveness of our
system design.
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Figure 9: Intuition for our algorithm. (a) The correct location
cannot be determined by the intersections; (b) When using a
larger width, the correct location can be determined by the
area of intersections of multiple hyperbolas.

5 Implementation and evaluation
In this section, we delve into the implementation of our sys-
tem, followed by an evaluation of its effectiveness. First, we
will provide an in-depth view of the system’s implementation,
including the system configurations and algorithm intricacies.
Then, we analyze the evaluation methodology and experimen-
tal setup, presenting the resulting data. This will be coupled
with a thorough discussion of the results as well.

5.1 Implementation

We first discuss the hardware in the experimental scenarios,
followed by a detailed illustration of the software implemen-
tation. Second, we present the setup for the experiments.
5.1.1 Hardware

The system, predominantly developed using C++, is executed
on a Thinkpad T14 Gen2 laptop, equipped with an Intel Core
i7-10510U 4.9 GHz CPU. This laptop serves as a central hub,
facilitating connections between all other components. The
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(a) KinectV2 (b) Robot (c) Wi-Fi device

Figure 10: (a) KinectV2 camera in our use case provides only the RGB frames while Depth information is ignored; commer-
cial RGB cameras can replace it. (b) Autonomous bot provides 3D locations, depicting the world coordinates, which many
commercial robotic vacuum cleaners are capable of. (c) Wi-Fi device is in a commercial off-the-shelf fashion furnished with
Intel 5300 NICs.

neural networks, implemented with the PyTorch library, run
on a Flask-based server hosted on a MacBook Several other
key components, as depicted in Figure10, are also employed
The KinectV2 camera is used specifically for extracting RGB
frames, whose functionality can be effectively replaced by
any standard commercial RGB camera after calibration. An
autonomous robot equipped with SLAM technology, akin to
the ones found in commercial robotic vacuum cleaners, also
forms an integral part of this setup. We also utilize a pair of
commercial off-the-shelf Wi-Fi devices equipped with Intel
5300 NICs. One device serves as a transmitter and is attached
to the camera, while the other operates as a receiver and is
situated at an unkown location.
5.1.2 Software

Data processing tasks are primarily handled using std17 ver-
sion of C++. We integrate various libraries to streamline
these processes. Notably, OpenCV is implemented to pro-
vide an array of computer vision-related functionalities, such
as the Rodrigues function referenced in Eq. 3. Additionally,
the freenect2[44] library enables connections of streamlining
frames from the KinectV2 to the terminal.
5.1.3 Experiment Setups

As shown in Figure 11, we establish office and open-space
scenarios to evaluate the performance of our algorithm. In
both scenarios, the camera is deliberately adjusted to pre-
clude direct visibility of the receiver. The world coordinates
in both settings are defined by the autonomous robot, with
the center of the coordinates coinciding with the center of
the robot, as shown in both Figure11a and Figure11b. In the
office scenario, we position both the camera and the trans-
mitter at [3.0m,0], with the receiver located at [3.0m,2.4m].
In the open-space scenario, the camera and the transmitter
are situated at [2.4m,0], with the receiver at [2.4m,2.4m]. In
both scenarios, the program autonomously selects between
15 to as many as 100 individual frames during the camera
mapping stage to ensure sufficient accuracy for subsequent
stages. During the Wi-Fi mapping stage, we enlist the aid of

two volunteers to traverse three predefined and several ran-
domly chosen trajectories in both scenarios to validate the
performance of the localization algorithm.

Camera &

Transmitter

Receiver

Robot

(a) Office scenario

Staff

Camera &

Transmitter

RobotReceiver

(b) Open-Space scenario

Office Space

Open Space

(c) Floor plan

Figure 11: Experiment setup. The office (a) and open-space
(b) scenarios have been established for validation. (c) presents
the floor plans of both scenarios.

5.2 Evaluation

Firstly, we evaluate the effectiveness of the transformation
matrix. Our fundamental approach involves determining the
Euclidean distance between the location reported by the au-
tonomous robot and the location perceived by the camera at
any given time instance. The robot is programmed to follow
a predefined trajectory1. Subsequently, we assess the perfor-
mance of our proposed hyperbolic model during the Wi-Fi
mapping phase. In this setting, we define an error as the Eu-
clidean distance between the algorithmically determined and

1Given that camera localization is based on the Solve-PnP algorithm—a methodology extensively analyzed and validated for efficiency—we do not present evaluations of its accuracy
in this study.
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Figure 12: Transformation matrix accuracy. Four trajectories, corresponding to the ones used in later evaluation, have been
conducted. The ground truth is provided by the SLAM-bot, while the observation is solely based on the camera’s data.

manually measured locations of the unknown Wi-Fi. We dis-
play this performance using the experiment setups previously
delineated.
5.2.1 Transformation Matrix

A series of tests is conducted within two distinct scenarios
to thoroughly evaluate the holistic performance of the trans-
formation matrix. As visualized in Figure 12, we utilize four
diverse trajectories - L-shape, circle, rectangle, and random
- to graphically exhibit the precision of the transformation
matrix. During the experiment, the terminal concurrently re-
trieves the observed and reported locations from the camera
pipeline and the robot, respectively, at any given moment.
Once an ample number of location pairs have been amassed,
we compute the Euclidean distance between these two sets
of coordinates to ascertain the extent of error. Remarkably,
the method demonstrates consistent performance across both
scenarios, displaying satisfactory accuracy in all four trajec-
tories. It registers an average deviation of merely 0.05 meters
in the three predefined trajectories, with a slightly higher
deviation of 0.08 meters in the most unpredictable random
trajectory, as shown in Figure 12d. These results are regarded
as satisfactory for progression to the subsequent stages of our
research.
5.2.2 Wi-Fi Mapping Evaluation

Multiple experiments are conducted across various scenar-
ios to evaluate the robustness of our algorithm. In the course
of the actual experiments, an individual ambulates while the
Wi-Fi infrastructure initiates the collection of Channel State
Information (CSI), concurrently signaling the camera to com-
mence recording the trajectory. Once the CSI data has been
gathered, the Wi-Fi infrastructure once again communicates
with the camera, and the collected data is subsequently pro-
cessed and aligned within the terminal to determine the loca-
tion of the unknown Wi-Fi. It should be noted that the camera
mapping is predetermined and verified using the methods
previously discussed, which achieved centimeter-level accu-
racy. As illustrated in Figure 13a, approximately 80% of all
test cases attain an accuracy of less than 0.5 meters, with
an average accuracy of 0.339 meters. To further underscore
the robustness of our algorithm, we delve into three distinct
aspects in the following sections.

Impact of Environment. To evaluate the algorithm’s
effectiveness across varied environments, we conduct exper-
iments in two distinct scenarios as illustrated in Figure 11.
These scenarios encompass an office environment and an
open-space environment, with their setup detailed earlier. The
office environment, compared to the open outdoor space,
presents a higher number of obstacles, thereby amplifying the
multipath effects on the collected CSI data. Yet, as depicted in
Figure 13b, our post-experiment analysis reveals that 70% of
the collected data achieve an accuracy of less than 0.5 meters
in both scenarios. Notably, almost 90% of the data from the
open-space environment attain an accuracy of less than 0.5
meters. Furthermore, the average precision metrics for both
scenarios stand at 0.27 meters for the open-space and 0.35
meters for the office setting.
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Figure 13: Wi-Fi localization accuracy. (a) for the overall Lo-
calization Error; (b) for localization errors in two different
Scenarios; (c) for localization errors in four identical trajecto-
ries; (d) for localization errors conducted by two individuals.

Impact of Trajectory. Recognizing that individuals do
not follow rigid paths consistently in real-world scenarios,
we instruct our staff to traverse three predefined and one ran-
domly selected trajectory for a comprehensive evaluation of
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Figure 14: Trajectories and PLCs. Above are the trajectories ascertained exclusively based on Camera Observations. Below
are the corresponding plots of PLCs. Detected PLCs are collected via Wi-Fi. Calculated PLCs are derived according to Eq. 9,
considering the known locations of the receiver Rx, the transmitter Tx, and assuming j = 0.

the algorithm’s performance. The results of these four types of
trajectories, as recorded by the camera, and their correspond-
ing PLCs are visually represented in Figure 14. Importantly,
the Detected PLCs are acquired through Wi-Fi devices, while
the Calculated PLCs are computed based on Eq. 9, factoring
in the actual locations of the receiver Rx, the transmitter Tx,
and with j = 0. Our analyses expose inherent biases between
the two sets of PLCs across all trajectory types. However, the
resultant localization errors consistently fall within an accept-
able range, with up to 60% achieving an accuracy of less than
0.5 meters. As shown in Figure 13c, examining further the
accuracy details for the four trajectories, we observe the fol-
lowing: both the L-shaped and rectangle trajectories exhibit
high accuracy, with 90% of instances yielding a precision of
less than 0.5 meters. The L-shaped trajectory averages a pre-
cision of 0.24 meters, while the rectangle trajectory is at 0.39
meters. The circle trajectory sustains a precision rate of 70%
and an average error of 0.34 meters. In contrast, the random
trajectory hits the 60% precision mark, averaging an error of
0.44 meters.

Impact of User Diversity. Recognizing the diversity of
potential users for the proposed localization algorithm, we
pursue accuracy validation measures encompassing different
individuals within the workforce. Experimental trials are con-
ducted with two staff members, each presenting distinct walk-
ing patterns, fluctuating velocities, and diverse physical at-
tributes. Throughout the course of the experiments, variations
are observed in the discrepancies between the paths predicted
by the PLC and the actual trajectories followed by different
staff members. Despite these discrepancies, the mean local-
ization error derived from Wi-Fi signals for both participants
yields satisfactory outcomes. As shown in Figure 13d, par-
ticularly, the accuracies achieved for staff members A and B

are less than 0.5 meters, with success rates of 75% and 80%
respectively. Moreover, the average deviations are as low as
0.32 and 0.34 meters for staff members A and B, respectively.

6 Conclusions
In this paper, we unveiled a new system named Visual Assis-
tant. The system was specifically designed to autonomously
create environmental maps and precisely locate cameras and
Wi-Fi infrastructure. The system operates in two key stages:
camera mapping and Wi-Fi mapping. During the camera map-
ping stage, we harnessed modern computer vision and SLAM
(Simultaneous Localization and Mapping) technologies to ef-
fectively map the environment. In the Wi-Fi mapping stage,
we introduced a hyperbolic model that uses camera-recorded
trajectories and changes in path length to identify unknown
Wi-Fi infrastructure. We tested the system using a commer-
cial Wi-Fi network, a standard camera, and a robot. The
results showed centimeter-level accuracy in camera mapping
and decimeter-level accuracy in Wi-Fi mapping. In summary,
our system marks a significant step forward in the field of
indoor device-free tracking systems.
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