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Abstract: Remote sensing satellites are vital for military operations and intelligence. Optical payloads capture high-value
imagery, while Orbit Edge Computing (OEC) enables onboard deep learning for real-time processing. However, OEC faces
computational constraints, addressed via model compression—yet this introduces robustness challenges. Spaceborne noise
(vibrations, clouds, dust, haze) degrades image quality, causing compressed models to fail in accurate identification, severely
compromising mission effectiveness. In this work, we aim to enhance the robustness of compressed models to ensure stable
and reliable military-oriented orbital edge computing tasks, proposing an Adaptive Robustness Recovery Plugin (ARP). The
core design of ARP includes three key components: (1) noise feature detection based on contrastive learning to accurately
distinguish clean features from perturbed ones; (2) a feature restorer based on non-local means to targetedly suppress noise
interference; and (3) a dynamic insertion strategy built on Noise Perturbation Intensity (NPI) to ensure the plugin is deployed
at the most critical network layers. Experiments were conducted by simulating space noise on three remote sensing datasets for
target recognition and ship classification: NWPU-RESISC45, HRSC-2016, and FGSC-23. Results demonstrate that under an
extreme pruning rate of 99%, ARP achieves an average improvement of 3.2% in robust accuracy compared to existing baseline
methods, with no significant loss in recognition accuracy on clean data. These findings validate the effectiveness of ARP in
providing robustness guarantees for compressed models within resource-constrained satellite environments.
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1 Il’ltl‘()dllcti()n and high downlink latency, making it difficult to meet the
requirements of latency-sensitive military missions.

Military Earth observation satellites collect multispectral im- OEC emerges as a highly promising solution, enabling in-

agery for geospatial analysis, providing valuable support for
various sensing and computing applications in harsh space en-
vironments characterized by severe constraints on energy and
network connectivity [1]. Visual tasks represent one of the
core applications of such satellites, including military needs
such as detecting ships at military bases to track their activ-
ities [2], assessing war damage [3], and enabling all-weather
regional surveillance. Military satellites can collect massive
volumes of Earth imagery daily, with data quantities often
reaching dozens of terabytes [4]; the traditional model relies
on satellite-to-ground links to transmit data back to ground
stations for processing. However, satellite-to-ground commu-
nications suffer from limited capacity, insufficient stability,
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space processing of observed data and transmitting only the
processed results to the ground [5]. Nevertheless, due to the
dual constraints of computational capability and energy on
satellites, on-orbit processing faces significant computational
bottlenecks: remote sensing images from earth observation
satellites are extremely large (i.e., hundreds of millions of
pixels), while the on-board computing capacity of remote
sensing satellites is typically less than 10 TOPS, far exceeding
the processing capability of satellite-embedded hardware [6].
This bottleneck stems not only from low hardware computing
power but also from limited power generation by solar pan-
els, which makes it challenging to process all images within
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the energy budget. For instance, the Baoyun satellite can col-
lect a maximum of 260 kilojoules of energy per day, of which
only approximately 150 kilojoules is allocated to computing
tasks. This restricts the satellite to processing only about 22%
of observable high-resolution 3K satellite images [2].

Therefore, edge computing in satellite payloads must
leverage lightweight algorithms and hardware-aware tech-
nologies to mitigate the constraints imposed by limited re-
sources [7]. These measures not only enable energy-efficient
processing but also facilitate real-time or near-real-time anal-
ysis of diverse application data, achieving the dual objec-
tives of conserving power resources and enhancing execution
speed. To this end, models deployed on satellites typically
require lightweight compression via techniques such as prun-
ing, distillation, and quantization [8, 9]. These compression
methods can reduce the memory, computational power, and
latency consumed by tasks accordingly. However, as illus-
trated in Figure 1, current compression algorithms [10-12]
primarily focus on model accuracy while neglecting robust-
ness—a critical factor. Experiments show that, taking pruning
algorithms as an example, although traditional algorithms
can maintain stable accuracy with increasing compression
rates, their robust accuracy under noise interference declines
sharply, rendering the models nearly unusable.
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Figure 1: Performance of ResNet-18 under different robust
strategies and compression ratios on the CIFAR-10 dataset.
The solid line represents the performance on uncorrupted
data, while the dashed line represents the performance under
perturbation.

The space environment is highly dynamic and complex,
with noise interference in satellite images stemming from
multiple sources: the short orbital period of satellites, rapid
changes in illumination conditions, combined with space vi-
brations and atmospheric factors (e.g., dust, haze)[13], result
in substantial noise in images, which easily leads to difficul-
ties in model recognition or misjudgment. Atmospheric dust,
haze, and pollutants affect light scattering and absorption, fur-
ther exacerbating the complexity of satellite image exposure.
The combined effects of the space environment ultimately
cause satellites to frequently capture images with limited spa-
tial and spectral resolution, making on-orbit computing for
military satellites an arduous challenge.
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To address this issue, one solution is to implement image
enhancement techniques to continuously acquire high-quality
satellite data. For instance, improving brightness, contrast,
and sharpness while preserving image details and reducing
noise can enhance the accuracy of scenarios such as mov-
ing target tracking [14] and cloud coverage reduction [15] in
satellite edge computing tasks. However, such solutions suffer
from high costs, the need for separate deployment of image
enhancement algorithms, and poor timeliness.

Another solution is to enhance the robustness of com-
pressed models to resist noise interference, such as ad-
versarial training [16-22], robust regularization [23-27],
and robustness-aware compression strategies [28—34]. These
methods improve model adaptability to specific noises by
generating adversarial samples that simulate noise, but they
face issues such as high training costs, difficulty in balancing
regularization intensity, and increased compression complex-
ity. These methods are difficult to adapt to the resource
constraints under satellite conditions and have obvious limi-
tations in improving the robustness of on-board compression
models.

Thus, in satellite environments with limited computa-
tional resources, enabling compressed models to accurately
process remote sensing images subject to heavy noise inter-
ference without consuming excessive computational power,
while ensuring the stability of on-orbit tasks to provide pre-
cise and rapid military intelligence, remains an extremely
challenging task.

This paper proposes a method to restore the robust-
ness of compressed models, aiming to significantly improve
the image quality and accuracy of edge computing applica-
tions, particularly in tasks such as identifying and classifying
military ships. Specifically, we develop an Adaptive Robust-
ness Recovery Plugin (ARP) to restore the robustness of
compressed models. The plugin constructs a noise feature de-
tector via contrastive learning to accurately distinguish clean
features from perturbed ones; it then employs a non-local
mean-based feature restorer to targetedly suppress noise in-
terference, thereby eliminating the impact of noise on model
performance. Additionally, the pre-designed plugin is pre-
cisely embedded into the optimal position within the model
based on Noise Perturbation Intensity (NPI), minimizing the
impact on the original model while restoring robustness. To
validate the performance of the proposed method, compara-
tive experiments are conducted using three different datasets
and seven advanced algorithms under simulated space noise
conditions, with results fully demonstrating its effectiveness.
In summary, the main contributions of this paper are as
follows:

* We address the critical issue of compressed models fail-
ing to withstand spaceborne noise in intelligent satellite
observation tasks, which renders the models unusable.
Specifically, we introduce an adaptive robustness plugin
that achieves robustness recovery for various intelligent
observation models in a loosely coupled manner.

* Our approach leverages contrastive learning for noise fea-
ture detection to accurately distinguish clean features from
perturbed ones. We design a non-local means-based feature
repair module to selectively suppress noise interference
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and construct a dynamic insertion strategy based on Noise
Perturbation Intensity (NPI) to ensure the plugin is de-
ployed at the most critical network layers. After fine-tuning
with the compressed model, we enhance overall robustness
by fostering synergistic integration among these plugins.

* Extensive experiments under simulated spaceborne noise
conditions validate the effectiveness of the proposed
method.

2 Related Work

2.1 Remote Sensing Image Enhancement

Extensive research efforts have been devoted to advancing re-
mote sensing image enhancement techniques. Conventional
image processing methodologies encompass a range of ap-
proaches including both linear and nonlinear transformations,
histogram equalization [35], Retinex theory [36], frequency-
domain analysis, image fusion, and dehazing algorithms [37].
Among these, edge computing-oriented enhancement tech-
niques rooted in traditional image processing paradigms have
been developed, such as Morphological Reconstruction-based
Contrast Limited Adaptive Histogram Equalization (MR-
CLAHE) [38] and low-light image enhancement utilizing
camera response models [39], both of which fundamentally
rely on histogram equalization and Retinex theory.

While these methods demonstrate certain effectiveness
in specific scenarios, they exhibit inherent limitations that
constrain their practical application. The primary drawbacks
include the necessity for deploying additional image enhance-
ment algorithms, resulting in complex processing pipelines
with multiple interdependent steps [14]. This computational
complexity significantly impacts the real-time performance of
these systems, rendering them less suitable for time-sensitive
applications or resource-constrained environments. Further-
more, the cascaded nature of these algorithms often leads
to cumulative errors and artifacts throughout the processing
chain, potentially degrading rather than enhancing the final
image quality in certain operational conditions.

2.2 Enhancing Robustness of Compressed
Models

The improvement of robustness in compressed neural net-
works represents a critical frontier in efficient deep learn-
ing, currently addressed through three synergistic approaches
[10] : architectural modifications, training paradigm innova-
tions, and post-compression enhancements [16-22, 40, 41].
Architecturally, the integration of noise-resistant operations
(e.g., non-local means filters) and perturbation-aware at-
tention mechanisms complements robust feature extraction
via depthwise separable convolutions. Training methodolo-
gies leverage compression-aware adversarial perturbations,
quantization-robust loss objectives, and knowledge distil-
lation from full-precision teacher models [23-27]. Post-
compression, dynamic inference path selection based on input
SNR, layer-wise feature denoising modules, and adaptive pre-
cision adjustment (e.g., 4/8-bit hybrid quantization) further
sustain robustness. State-of-the-art implementations demon-
strate that properly optimized compressed models can achieve
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full-precision-equivalent robustness with marginal compu-
tational overhead (15%), though challenges persist under
extreme compression ratios (90%) or compound noise sce-
narios combining sensor noise, atmospheric interference, and
adversarial perturbations [28-34].

3 Methods

3.1 Problem Formulation

In this subsection, we first introduce the formulation of the
robust recovery problem for compressed models.

Let (x,y) denote an instance in the dataset, where x repre-
sents the input data and y is the corresponding label. We use
fo(x) to denote a general compressed classifier with parame-
ters 6, and introduce €2 to represent the additional parameters
for restoring the robustness of fg(-). Here, § > 0 is the per-
turbation radius, and x’ denotes the perturbed data, which is
constrained within the /.-norm ball centered at x with radius
0, defined as ZB(x,8) = {x' : ||x — || < &}. With these defi-
nitions, the task of robustness recovery can be formally stated
as follows:

mp &
Xv

3.2 Adaptive Robustness Plugin

Jmax Z(fora(x+8),y)|. (1)

In this subsection, we present in detail the Adaptive Ro-
bustness Restoration Plugin (ARP), whose architecture is
illustrated in Figure 2.

Let Z; € RWi*HixDi denote the features extracted from the
i-th layer of the compressed model, where D; represents the
number of channels, and W; and H; correspond to the width
and height of individual hidden features, respectively. Each
Z; ;j € RV*Hi represents the feature map of the j channel in
layer i. Furthermore, let Z; and Z; denote the feature maps
extracted from clean and noisy images, respectively. For each
feature, we generate a binary label vector y; € {0, 112, where
N ;=0 indicates a feature channel significantly perturbed
by noise, and y = 1 represents a noise-free feature channel
from clean i 1mages

l)h7 l]k l]k7 (2)

Vke s

where f(z7n,zij) is a feature-dependent weighting function
and € (Zj;) is the normalization factor. Following [42], we
adopt a Gaussian (softmax) formulation: Let f(zijn,zijk) =

exp ( 7 0(z; ,h) (p(z{jk)), where 0(z7;) and ¢ (z7jx) represent
two embedded representations of z;j;, and z;j; (obtained via
two 1 x 1 convolutions), d denotes the number of channels,
and € = Yyre.» f(zijn,zijx)- Note that f/€ corresponds to
the softmax function, and [43] has demonstrated that this
formulation is equivalent to the softmax-based self-attention
computation in [44]. In order to enable the plugin to have the
ability to identify clean channels and channels severely dis-
turbed by noise, during training, we introduce a contrastive
lossS Zonrast that aims to maximize the distance between
feature representations of clean and perturbed images. This
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Figure 2: An overview of Adaptive Robustness Restoration Plugin (ARP).

enhances the generator’s ability to discriminate meaningful
differences between features, thereby improving the accu-
racy of ARP in identifying perturbed features. The training
objective also includes a binary cross-entropy loss Zcg to
supervise the outputs based on the generated binary labels.
The total loss function .Z combines these two losses with a
balancing weight A, defined as:

L = ZBCE +2 '$C0ntrast7 (3)

where £pcg and Leontrast are respectively defined as follows,
with ¥ being a hyperparameter that controls the minimum dis-
tance threshold between feature representations of clean and
perturbed images:

D;
gComrast = yzjlog pl] ( _y;,j)log(l _Pi,j)) )
lJ:l
4)
ZLContrast = A - max (0, Y— ”Zl Zisj ”%) : o)

Based on the detector’s output, the most severely per-
turbed channel features are fed into the feature restoration
module, which operates on the principle of non-local means
(NLM) smoothing [45]. The NLM algorithm computes the
denoised feature map y from the input feature map x by taking
a weighted average over all spatial positions ., formulated
as:

Through this training paradigm, the detector learns to ac-
curately capture the intrinsic differences between perturbed
and clean features, performing channel-wise classification be-
tween them. Features identified as perturbed are selectively
routed to the restoration module for non-local means smooth-
ing. This architecture offers dual advantages: (1) it effectively
suppresses noise propagation within the ARP while perfectly
preserving clean feature information, ensuring the original
compressed model’s performance remains unaffected by the
additional components; (2) when encountering information
perturbations, the model can intelligently identify and filter
out noise before propagating features downstream, thereby
guaranteeing reliable robustness restoration accuracy.

Since different model layers exhibit varying degrees of
noise perturbation, the optimal plugin insertion positions can
be determined by quantifying the Noise Perturbation Intensity
(NPI) at each layer. For the feature map Z; at layer i, its NP1 is
defined as the divergence between the original and perturbed
features, weighted by the feature’s informational importance:

NPIL; = KL(Py, || Pg,) x || Zil3, 6)

where Z; denotes the original features at layer i, Z; repre-
sents the noise-perturbed features, and ||Z;|5 measures the
feature’s information richness through its squared L2-norm. A
higher NPI; value indicates both greater noise corruption and
higher informational significance of the layer’s features, thus
warranting stronger necessity for plugin insertion. In our ex-
periments, we establish a threshold 7 such that when NPI; > 7
for a given layer, the plugin is inserted to perform targeted
noise suppression.

4 Experiment

In this section, we evaluate our proposed ARP against several
state-of-the-art methods. We first describe the experimental
hardware, datasets, baseline methods, and evaluation metrics,
followed by a comprehensive analysis of the results.

4.1 Heterogeneous Hardware

A computational military satellite can enhance onboard sens-
ing, communication, and control operations. In this context,
the test satellite is equipped with two industrial-grade low-
power modules: Raspberry Pi 4B (RPI4) and Atlas 200 DK
(Atlas). This study focuses on characterizing the onboard
computing performance using these two modules, which
represent widely adopted computing hardware in satellite
applications.

4.2 Datasets

We conduct experiments on three publicly available real-
world remote sensing datasets: NWPU-RESISC45[46],
HRSC-2016[47], and FGSC-23[48].

The NWPU-RESISC45 dataset is a benchmark dataset
for remote sensing image classification, comprising 256x256
pixel images distributed across 45 distinct categories. These
categories encompass urban features (e.g., airports, commer-
cial areas, and stadiums) as well as natural landscapes (e.g.,
forests, deserts, and wetlands).

HRSC-2016 is a ship detection dataset containing 2,976
ship instances categorized into 4 major classes and 19 fine-
grained subclasses. All images were collected from six major
ports, with ship sizes ranging from 300 to 1,500 pixels and
spatial resolutions between 0.4m and 2m.
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FGSC-23 features high-resolution ship targets captured
by Google Earth and GF-2 satellite imagery over water sur-
faces. This fine-grained ship recognition dataset contains
4,052 instances across 23 categories, specifically designed for
detailed ship identification in optical remote sensing imagery.

For all three datasets, we adopt the following data parti-
tioning: 70% of images per class are allocated for training,
15% for validation (hyperparameter tuning), and the remain-
ing 15% for performance evaluation.

4.3 Baseline Methods

We employ four representative methods as performance
benchmarks, including:

* Two image enhancement approaches: MR-CLAHE [38]
and RETINEX [36]

* Two pruning-based robustness enhancement methods:
RADMM [28], HYDRA [29], PPRP [40], LM [41].
Among them, LM and PPRP are feature-level denoising
methods.

4.4 Noise Simulation

We simulate noise perturbations using the methodology from
[49] to evaluate model robustness under spaceborne condi-
tions. Following Hendrycks et al. [50], we generate special-
ized noise types designed to emulate space-specific environ-
mental interference: Gaussian, Poisson, and salt-and-pepper
noise simulate sensor-native noise and random disturbances
from rapid illumination changes; Gaussian blur and motion
blur replicate scattering/absorption effects caused by atmo-
spheric dust, haze, and satellite vibration; additionally, we
include l.-bounded perturbations and other common cor-
ruptions. The robustness accuracy is computed across all
corruption types and severity levels for comprehensive evalu-
ation.

4.5 Parameter Settings

We first process remote sensing images with noise simula-
tion to replicate space interference conditions, then perform
model training and pruning to obtain compressed models.
Following standard configurations [51], we train ResNet-18
and VGG-16 for 110 epochs with an initial learning rate
of 0.1, which decays by a factor of 10 at epochs 100 and
105. Subsequently, we prune the weight parameters of each
Conv2D layer in ResNet-18 and VGG-16 to derive com-
pressed models. Training parameters of ARP is in Table
1:

Table 1: ARP Training Parameters Setting

Component Parameter Value
Optimizer SGD
Batch Size 128

ARP Training  Initial LR 1x1074
Momentum 0.9
Weight Decay 1x107#
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4.6 Results and Comparison

We evaluate our model on three datasets: NWPU-RESISC45,
HRSC2016, and FGSC-23, using both ResNet-18 and VGG-
16 architectures. Experiments conducted at pruning rates
of 90%, 95%, and 99% reveal key observations (Table 2):
(1) RETINEX demonstrate inferior performance, highlight-
ing the limitations of relying solely on subnetworks to ad-
dress the complex architecture-robustness relationship; (2)
MR-CLAHE that incorporate robustness information during
pruning achieve robustness gains but sacrifice baseline ac-
curacy; (3) Parallel approaches (RADMM, HYDRA, LM,
PPRP) show competitive performance but suffer from algo-
rithmic complexity and high training costs. Our proposed
ARP method achieves superior robustness across all datasets
under high compression rates, effectively restoring com-
pressed model robustness without compromising clean data
accuracy.

4.7 ARP’s Computational and Memory Over-
head

We conducted rigorous performance measurements under
simulated spaceborne noise conditions using the FGSC-23
dataset and ResNet-18 base model to evaluate ARP’s oper-
ational feasibility for orbital edge computing. As shown in
Table 3, the results demonstrate ARP’s exceptional suitability
for resource-constrained satellite environments:

Parameter Efficiency: ARP introduces only 62,976 pa-
rameters, representing just 0.54% of ResNet-18’s 11.7M
parameters. This extreme parameter efficiency enables de-
ployment even on memory-constrained satellite processors.

Computational Overhead: ARP’s 12.7 MFLOPS repre-
sents only 0.7% of the base model’s 1,814 MFLOPS. The plu-
gin’s operations are concentrated in specific layers (conv3_x)
to minimize impact.

Memory Footprint: With 0.24MB memory requirement,
ARP uses just 0.27% of the base model’s 89.1MB. Fixed
memory allocation ensures predictable resource usage during
satellite operations.

Latency Impact: On Raspberry Pi 4B: Adds 4.2ms (21.9%
of base 19.2ms). On Atlas 200 DK: Adds 1.8ms (22.0% of
base 8.2ms). Total inference time remains under real-time
constraints for orbital applications.

5 Conclusion

The proposed model demonstrates remarkable robustness
and scalability in edge computing-based satellite image deep
learning, offering valuable insights for the field. It main-
tains stable performance for remote sensing classification and
recognition tasks under both computational resource con-
straints and challenging spaceborne noise conditions. The
model’s scalability is further evidenced by its adaptability
to various edge computing platforms and efficient utilization
of limited computational resources. This synergistic com-
bination of operational robustness and scalable framework,
coupled with its modular design, establishes an ideal so-
lution for on-orbit computing. The methodology is poised
to advance space-based integrated observation systems and
onboard data processing/decision-making capabilities.
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Table 2: Performance of different models on FGSC-23, HRSC-2016 and NWPU-RESISC45 datasets at various pruning ratios.
The values before the slash (/) represent clean accuracy, while the values after the slash represent robust accuracy. All values
are expressed as percentages without the % symbol. Best performance is written in bold. A % refers to the absolute performance
gain against the best baseline.

Model ResNet-18 VGG-16
Pruning Ratio 90% 95% 99% 90% 95% 99%
RADMM 80.54/43.68  79.33/42.56  71.17/37.21 74.76/39.92 72.67/38.44  65.69/31.30
HYDRA 76.74/43.34  76.16/42.45 72.21/38.80 78.31/43.81 76.58/42.61 70.59/35.56
LM 64.12/28.21 62.01/27.83 56.90/18.94 63.39/29.93 62.76/25.80 51.65/24.62
FGSC-23 PPRP 67.01/28.21 65.90/29.12 55.80/21.07 66.28/32.88 60.87/27.34  50.76/24.10
MR-CLAHE 77.34/41.73  75.16/40.49 70.24/38.19 74.84/40.62 72.45/39.42 60.36/34.52
RETINEX 77.39/41.31  73.54/39.29 59.42/31.37 75.66/39.26 69.27/38.27 58.49/31.24
Ours 83.00/50.78 81.34/48.52 77.05/44.94 80.36/47.60 78.33/45.70 73.50/42.78
A% 2.31/4.29 2.01/2.42 1.65/2.92 2.05/3.65 1.75/1.23 2.01/2.29
RADMM 66.56/30.21  63.34/29.57 52.45/22.61 65.85/31.87 59.45/29.76  52.23/26.65
HYDRA 64.45/29.20 65.34/28.34  57.23/19.36  64.56/28.07 61.95/26.86  51.34/25.77
LM 64.12/28.21 62.01/27.83 56.90/18.94  63.39/29.93  62.76/25.80 51.65/24.62
HRSC-2016 PPRP 67.01/28.21 65.90/29.12 55.80/21.07 66.28/32.88 60.87/27.34  50.76/24.10
MR-CLAHE 63.06/28.18 61.90/27.32 56.05/20.73  63.58/30.94 61.93/27.04 50.51/22.23
RETINEX 65.34/28.45 64.23/27.27 56.12/18.41 62.65/27.25 57.54/25.25 50.43/24.65
Ours 69.52/33.45 68.22/31.40 59.56/24.73 68.67/34.31 65.80/32.46 55.66/28.30
A% 2.51/3.24 2.32/1.83 2.33/2.12 2.39/2.65 3.04/1.23 3.43/1.65
RADMM 72.56/34.21 71.34/33.57 65.45/29.61 71.85/36.87 64.45/31.76  60.23/28.65
HYDRA 71.45/33.20 70.34/32.34  63.23/28.36  67.56/36.07 63.95/32.86  59.34/25.77
LM 68.12/30.21 67.01/29.83  60.90/25.94  65.39/35.93  59.76/32.80 55.65/29.62
RESISC45 PPRP 70.01/33.21 65.90/32.12 61.80/29.07 69.98/36.88 60.87/34.34  58.76/27.10
MR-CLAHE 70.94/31.22 68.34/30.68 63.25/25.34 68.26/35.41 66.15/33.54 58.26/24.61
RETINEX 72.34/32.45 69.23/31.27 59.12/27.41 71.65/33.25 64.54/31.25 61.43/27.65
Ours 74.52/37.45 72.22/3540 67.56/30.73 73.67/38.31 67.98/36.46 64.66/31.30
A% 2.51/3.24 2.32/1.83 2.33/2.12 1.82/1.43 3.44/2.12 3.23/1.68
Table 3: Computational and Memory Overhead Analysis
Method Parameters Ops (MFLOPS) Memory (MB) Overhead (%) Latency (ms)
BaseModel 11,689,512 1,814 89.1 19.2/8.2
ARP 62,976 12.7 0.24 0.7 4.2/1.8
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