
Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 17

Journal of Intelligent Computing and Networking
https://www.ffspub.com/index.php/jicn/index
ISSN 3079-9228 (print)
E-mail: jicn.office@ffspub.com

Article

Exploring A Model Type Detection Attack against Machine
Learning as A Service

Yilong Yang1, Xinjing Liu2,†, Ruidong Han3, Yang Liu 2
1School of Artificial Intelligence, Xidian University, Xi’an 710126, China

2School of Cyber Engineering, Xidian University, Xi’an 710126, China
3 School of Computing and Information Systems, Singapore Management University, 188065, Singapore

†E-mail: liuxinjing j@163.com

Received: August 30, 2025 / Revised: November 1, 2025 / Accepted: November 11, 2025 / Published online: November 17, 2025

Abstract: Recently, Machine-Learning-as-a-Service (MLaaS) systems are reported to be vulnerable to varying novel attacks,
e.g., model extraction attacks and adversarial examples. However, in our investigation, we notice that the majority of MLaas
attacks are not as threatening as expected due to model-type-sensitive problem. Literally speaking, many MLaaS attacks are
designed for only a specific type of models. Without model type info as default prior knowledge, these attacks suffer from great
performance degradation, or even become infeasible! In this paper, we demonstrate a novel attack method, named SNOOPER,
to resolve the model-type-sensitive problem of MLaaS attacks. Specifically, SNOOPER is integrated with multiple self-designed
model-type-detection modules. Each module can judge whether a given black-box model belongs to a specific type of models
by analyzing its query-response pattern. Then, after proceeding with all modules, the attacker can know the type of its target
model in the querying stage, and accordingly choose the optimal attack method. Also, to save budget, the queries can be re-used
in the latter attack stage. We call such a kind of attack as model-type-detection attack. Finally, we experiment with SNOOPER
on some popular model classes, including decision trees, linear models, non-linear models and neural networks. The results
show that SNOOPER is capable of detecting the model type with more than 90% accuracy.

Keywords: Machine learning security; deep learning models; machine learning as a service; model type detection; linear models
https://doi.org/10.64509/jicn.12.27

1 Introduction
Advancements in machine learning and cloud computing
promote the development of Machine Learning-as-a-Service
(MLaaS) platforms [1, 2]. By providing pay-per-query inter-
faces to well-trained models, MLaaS systems support a wide
range of service instances for users, such as image analyz-
ing and predicting [3]. However, the success of MLaaS not
only leads to its popularity in applications but also attracts
the interest of attackers. In the past decade, multi-type at-
tacks against different machine learning models are proposed
to breach the security of MLaaS systems, e.g., model ex-
traction attacks (MEA) [4–6] and adversarial example (AE)
attacks [7, 8].

1.1 Really Black-Box?

To enclose real-world attack scenarios, many state-of-the-art
attacks against MLaaS are claimed implement in the black-
box setting [4, 5, 9, 10]. Despite oracle access to MLaaS
interfaces, these black-box attackers are claimed to obtain no
prior knowledge of the victim models. However, an easily
overlooked condition can breach the “black-box” claim, that
is, the MLaaS attacks are usually conducted with the prior
knowledge of the victim model’s type. A typical example is
MEA [4, 5, 9], in which each model extraction method is de-
signed against only one type of model. Thus, in practice, the
first default step of MEA is actually to choose a proper model
extraction method according to the model type info. We call
this kind of MLaaS attacks to be model-type-sensitive attacks.
For these attacks, if victim interfaces hide mode type info

† Corresponding author: Xinjing Liu
*Academic Editor: Xiuli Bi
© 2025 The authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.64509/jicn.12.27

18 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

Table 1: Examples of MLaaS attacks against different types of models. Most attacks listed in the table are model-type-sensitive.

Model Extraction Adversarial Example Model Inversion

Linear
Model

Reverse engineering [11]
Equation-solving [4]

Ensemble word
addition [12] Exhaustive search [13]

Decision
Tree

Path-finding [4]
Importance weighted

active learning [5]

Zeroth order
optimization [14, 15] Map inverter [16]

Kernel
Model

Extended adaptive
training [5]

Transferability
based attack1 [17]

GAN-based
attack [18]

Style-GAN based
attack [19]

N
eu

ra
lN

et
w

or
k MLP

Non-linear
equation solving [20]

Model distillation [21] Square attack [22]
Transferability

based attack [23, 24]
Substitute Training [25]

RNN Output biasing [26]

CNN
Active learning [20]

Copying with
non-label data [27]

1[17] shows the possibility to attack KM based on AE transferability, but some measurements to improve transferability (for NN) cannot
be used in KM attack, e.g., the attention mechanism in [23]. Thus, we repeat it in two cells.

(like what is done by Google and Amazon AI clouds), detect-
ing the target model type becomes the essential step to ensure
attack effectiveness and black-box characteristic.

1.2 Our Work

To resolve the model-type-sensitive problem MLaaS attacks,
we propose a novel attack, called model-type-detection attack
(MTD-A). Our work of this paper is summarized as follows.

We propose a novel MTD-A method, called SNOOPER,
which enables the adversary to run MLaaS attacks in a more
restrictive black-box scenario where the model type info of
MLaaS interfaces is hidden. In SNOOPER, two parts are
involved to achieve model type detection for an unknown
classifiers, including an attack sample pool generator (Gener-
ator), and a set of detection modules against different types of
models (Module). These two parts of SNOOPER are designed
to be generic and not based on particular dataset.

Specifically, Generator takes the responsibility for col-
lecting random data points or publicly available raw data
according to the requirement of Module. Module consists
of multiple detection modules, each of which can answer
whether a given black-box model belongs to a specific type
of models by analysing its query-response pattern. Then, the
adversary can select a proper attack method to launch attacks
according to the judgement result of Module. For example,
suppose an adversary wants to steal a model from a MLaaS
platform and Module tells that there may be a linear model
behind the target interface. Then, the adversary can directly
invoke the linear model extraction method [4], rather than
inefficiently trying every other way to find the effective one.

As the first attempt, SNOOPER focuses on developing
four modules to detect four classes of models commonly dis-
cussed in MLaaS attacks, including decision trees (DTs) [28],
linear models (LMs) [4], models with the non-linear kernel
(KMs) [20] and neural networks (NNs) [29]. These mod-
ules are loosely coupled, and mainly implemented based on
the unique characteristics of different models. Take DTs as an

example. DTs are distinguished from other models because
of its unique discrete mathematical structure. Hence, design-
ing a simple discreteness test is the key point to implement a
DT module. Moreover, since the NN structure can also affect
the effectiveness of some attacks (discussed in Table 1), we
also explore the feasibility to judge common NN architectures
based on the transferability of AEs in the NN module.

Summary. Our contributions are summarized as follows.

• We propose a novel method, SNOOPER, to implement a
first-of-its-kind MTD attack. This attack can break the
model type privacy, and assist in current model-type-
sensitive MLaaS attacks to work better in a more restrict
condition.

• We design four model type detection modules in
SNOOPER. These modules can be used to achieve MTD-
A on four most commonly types of models, namely DTs,
LMs, KMs and NNs. The modules show that model type
privacy can be easily broken by utilizing model’s inherent
mathematical characteristics.

• We test SNOOPER on three real-world MLaaS platforms,
including Google Cloud, Amazon Web Services and
Huawei Cloud. Experimental results show that SNOOPER
can always maintain more than 90% detection accuracy on
975 different models, and is able to save more than half
of the query budget for MLaaS attackers compared with
one-by-one trying the optimal attack method.

2 Background
In this section, we briefly review some background knowl-
edge to implement SNOOPER.

2.1 Model Extraction Attack

MEA [4, 5] is a kind of attack against the confidentiality
of model functionality. Suppose that there is a model owner

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 19

provides a pay-per-query interface of its model f . By launch-
ing the MEA attack, an adversary A can fit a local model
f ∗ whose functionality is approximate, or even identical, to
f within a limited number of queries such that f ∗ can be
used freely by A . Clearly, the proposal of MEA breaches the
model privacy of MLaaS platforms.

More formally, the MEA process is illustrated as fol-
lows [5]. Fix a public hypothesis class c = { f : X → Y }
and an error function Err : c× c→ R. Let a specific model
f ∈ c be deployed on the MLaaS interface. A tries to extract
f by interacting with the interface within the maximum query
budget q. The extraction process proceeds as:

1. A is given a description of c (including task info and
model type) and oracle access to f , and then, sends query
x ∈X to get back y← f (x) ∈ Y . With at most q queries,
A outputs the extracted model f ∗.

2. If Err(f , f ∗) is less than the desired error bound ε , the
attack is considered to a success.

As shown in Table 1, four types of models are commonly
discussed in MEA, namely LMs (e.g, logistic regression),
KMs, DTs, NNs. Among them, LMs can be directly extracted
via equation-solving. Extraction of DTs executes path-finding
or active learning. For NNs, different attack methods are used
for different networks, like convolutional NN extraction [30]
and recurrent NN extraction [26]. Particularly, an MEA attack
method against a class of models can hardly be applied to the
other type of models. For example, it is almost impossible
to use the equation-solving method for LM extraction to ex-
tract an NN model due to the disparate parameter sizes of the
two types of models. Thus, the above-mentioned MEA defi-
nition assumes a public description of the hypothesis class F
to ensure attack effectiveness.

2.2 Adversarial Examples

Another research hotspot on MLaaS attacks is the adversarial
example (AE) attack [31] whose definition is given below.

Definition 1 (Adversarial Example) Given an input x ∈X labeled
as y ∈ Y and a victim model f , an effective adversarial example at-
tack allows A to explore an optimized perturbation δ about x such
that the crafted sample x + δ is visually indistinguishable from x
but can mislead f to output y∗ = f (x+δ) ̸= f (x). The optimization
process to find minimized δ can be formulated as:

minimize
δ

f (x+δ ,y∗) s.t. x+δ ∈X ,∥δ∥∞ ≤ ε, (1)

where ∥ ·∥∞ denotes the ℓ∞ norm item [32] to measure the degree of
perturbation and ε is the perturbation bound.

Most existing AE attacks implemented in the black-box
setting can be classified into two categories. The first is query-
response based AE attacks. A directly extracts useful info
from the outputs of the remote model to fit the perturba-
tion noise via craftily designed optimization methods, e.g.,
zero-order gradient optimization [33]. The other is based on
the transferability of AEs [34]. Instead of directly attacking
the model hidden in the MLaaS interface, the transferability-
based attacker launches white-box attacks on locally trained
models to find AEs. Then, with probabilities, the locally gen-
erated AEs can also be used to fool the remote model. AEs
often stay close to the distribution of normal data, making

them highly subtle and difficult to detect [35]. Intuitively, the
more similar the architecture of the local model is to that of
the remote model, the more likely the attack can be effective.
Thus, as the model architecture info is given, the adversary
can usually generate more threatening AEs [34].

2.3 Other Attacks

Besides the above-mentioned two attacks, there are also
other typical MLaaS attacks like membership inference at-
tack (MIA) [36] and update leakage attack [37]. Since these
attacks are not directly related to SNOOPER, we omit their
detailed description for brevity. Table 1 reveals the fact that
most MLaaS attacks have strong “exclusivity”. That is, many
MLaaS attack methods have their own unique characteris-
tics, and thus, are only workable to one type of models. Due
to the characteristic, the adversary A , which wants to attack
a MLaaS interface whose model type info is hidden, needs
to try each attack method and searches for the most per-
formable one. Clearly, such a straightforward attack method
can increase the query complexity significantly and lowers the
practicality of most attacks.

3 Problem Formulation
3.1 Threat Model

This work focuses on MTD-A and corresponding defenses in
MLaaS systems. Here, we defines the attacker’s capabilities,
the defender’s assumptions, and the applicable scope of the
proposed framework.

Attacker Capability. The adversary is assumed to have
black-box access to an online MLaaS model, meaning only
query–response interactions are available. The attacker can
submit crafted inputs within the normal service interface and
collect outputs, which may include prediction probabilities
(soft labels) or discrete class indices (hard labels). No inter-
nal parameters, gradients, or training data are accessible. The
attacker’s goal is to infer the underlying model type among
several common categories.

Boundary of Applicability. SNOOPER currently targets
four widely used model classes in MLaaS applications: (1)
Decision Trees (DT), (2) Linear Models (LM), (3) Kernel
Models (KM), and (4) Neural Networks (NN), including feed-
forward (FNN), convolutional (CNN), and recurrent (RNN)
architectures. These categories are chosen because they share
the same input–output modalities and can perform similar su-
pervised classification tasks, making them indistinguishable
by task semantics alone. Other “proprietary” models with
inherently different input–output structures—such as Rein-
forcement Learning (RL) [38] or Graph Neural Networks
(GNNs) [39] agents—are beyond the current attack scope,
as their data formats (e.g., node–edge pairs, state–action tra-
jectories) already reveal model semantics and make MTD-A
inapplicable. This is because for most cases, these models can
be directly distinguished based on the learning tasks. For ex-
ample, if the target interface is provided for social relation
analysis with graph data, it is sure to be a graph model.

Defender Capability. The MLaaS provider aims to pro-
tect the confidentiality of model architectures deployed on
cloud platforms (e.g., Google Vertex AI, AWS SageMaker,

20 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

Huawei Cloud). The proposed defense modules in SNOOPER
are designed to detect and mitigate such MTD-A attempts
through behavior regularization and query monitoring.

3.2 MTD-A

Prior to dealing with MTD-A, we first formulate model type
detection problem (also illustrated in Figure 1).

We begin by describing the prototype of MTD-A in the
context of MLaaS systems. The difference is that the MLaaS
platform no longer provides a public model type description
of the query interface but treats it to be private info. In this
way, what a user can get from the interface is limited to be
the oracle access to the model f provided by the interface, q
query-response pairs {(xi,yi)|i∈ [q]}, the input space X , and
the output space Y , where q is the maximum query budget.

Figure 1: Illustration of MTD-A.

Formally, the model type detection process can be sim-
ulated by the following experiment. Denote a set of model
classes as C = {c1, ...,cn}. Fix a hypothesis model class
c = { f : X → Y } randomly selected from C . Let a specific
model f ∈ c be deployed on the MLaaS interface. Then, the
adversary A tries to give an answer c′ ∈ C by interacting
with the interface of f within the maximum query budget q.
The experiment EXPC (f ,A ,c,q) considers to be successful
if the answer c′ is equal to c. Specifically, EXPC (f ,A ,c,q)
proceeds as follows.

1. A is granted full oracle access to f and a description of C
but without any description of c. Then, A sends queries
x ∈X to get back y← f (x) ∈ Y . With at most q queries,
A gives an answer c′ ∈ C about the target model type.

2. The output of EXPC (f ,A ,c,q) is 1 if c′ is equal to c,
otherwise, the output is 0.

Given the above experiment EXPC (f ,A ,c,q), we can further
derive the following definition about MTD-A.

Definition 2 (Model Type Detection Attack) Suppose C to be a set
of model classes. We say that an adversary that has black-box access
to an MLaaS interface implements C -MTD of complexity q and con-
fidence p against class set C if there exists Pr[EXPC (f ,A ,c,q) =
1]≥ p, for f ∈ c and c ∈ C .

Definition 2 constrains the range of model classes in-
volved in a model type detection attack to be within C .
The constraint is reasonable because based by experience,
the alternative types of models for common learning tasks
are usually limited to a specific range. Moreover, the defini-
tion indicates that model type detection can be quantitatively
evaluated by the query budget q and confidence bound p as
enough evaluation instances are sampled from C .

Attack Goal. Based on Definition 2, besides low query
complexity, the other attack goal for A is to achieve high
model type detection accuracy. The model type detection
accuracy can be evaluated from two perspectives.

• Overall Evaluation. Given a fixed class set C , over-
all evaluation indicates the detection confidence over the
whole set. The evaluation indicator pall is computed by
pall =Pr[EXPC (f ,A ,c,q) = 1]. High pall implies that the
attack method can distinguish any type of model in C with
high accuracy.

• Module Evaluation. Assume a subset C ′ ⊂ C , and limit
the output of A to be within C ′ ∪⊥ where ⊥ means un-
known types of models. Correspondingly, the experiment
condition is changed to that if the answer c′ of A is equal to
⊥ and c ∈ C /C ′, EXPC ′(f ,A ,c,q) also outputs 1. At this
time, we call the evaluation result Pr[EXPC (f ,A ,c,q)= 1]
to be the module confidence pmod . Here, pmod can be used
to evaluate whether each attack module in SNOOPER can
judge the model type with high confidence effectively and
independently. Note that the independence of the attack
modules counts a lot for the practicality of MTD-A in ap-
plications. Only independent modules can be used in any
combinations to launch attacks for different application
scenarios.

4 Design of SNOOPER

In this section, we detail our design of SNOOPER.

4.1 Outline of SNOOPER

At a high level, our framework, SNOOPER, can be outlined
into two parts, namely an attack sample generator (Genera-
tor) and a set of detection modules against different types of
models (Module).

Generator. As the prebox, Generator prepares all queries
required by Module to detect the target model type. Like other
MLaaS attacks, to save query budget, the MTD-A adversary
has to carefully craft the query inputs to ensure the maximum
info gain for each query. Normally speaking, the queries of
MLaaS attacks can be crafted with the data collected from
public data resources, or directly synthesized according to
specific rules. Especially, since most prior attacks only need
to breach the security of one type of models, their query
generation rules are usually singular and straightforward.
However, for SNOOPER, the target model type is unknown,
thereby leading to the involvement of hybrid rules to serve
multiple modules against different model types. Thus, we sep-
arate Generator as an individual component to achieve: 1)
filtering the repeated rules to avoid redundant queries in Mod-
ule, 2) and collecting all query-response info for repeated
usage in the latter attacks.

Module. This component is the core of SNOOPER to
breach model type privacy. In Module, multiple modules are
involved against different types of models as depicted in
Figure 2. Here, four modules against four popular types of
models are considered, including the LM module, DT mod-
ule, KM module and NN module. Each module can answer
whether the target model belongs to a specific type of models.
The answer of every module does not depends on any result
of other modules, except the NN module.

Especially, considering that NN architectures can also af-
fect the effectiveness of some attacks, there are also two
sub-modules involved in the NN module to further detect

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 21

whether the target NN architecture belongs to full-connection
network (FNN), convolutional neural network (CNN) or re-
current neural network (RNN).

Since the data generation rules of Generator totally de-
pend on the design of Module, the following description will
start with Module, followed by Generator.

Figure 2: Outline of the attack workflow of SNOOPER. In this
figure, MEA-DT, MEA-KM and AE-RNN mean the MEA
and AE attack methods (listed in Table 1) that are designed
against DT, KM, RNN models, respectively.

4.2 Modules of SNOOPER

Here, the design goal of SNOOPER is to develop a series
of modules to pass the experiment EXPC0(f ,A ,c,q), where
C0 = {cDT,cLM,cKM,cNN}. All modules proceed with the as-
sumption that the interface of f responds with the confidence
score for every query [26]. The following presents the details
of each module.
4.2.1 Module for Decision Trees (or Forest)

For the DT model (or called discrete model in [40]), one of its
characteristics distinguished from other models is to have a
finite output space that is determined by the leaf nodes. Based
on the characteristic, we have the following observation.

Observation 1 Given a model f ∈ c, denote its input vector as
x = (x1, ...,xn) where xi corresponds to the i-th input feature of f . If
and only if f is a DT model, it can be formulated as a key-function
table T = {(1,ϕ1), ...,(n,ϕn)}. For 1 ≤ i ≤ n, ϕi is a piecewise
function:

ϕi(xi) =


Y1, if βi,0 ≤ xi < βi,1

...

Ym, if βi,mi−1 ≤ xi < βi,mi

, (2)

where Y specifies a finite output (confidence value) space corre-
sponding to the leaf nodes of the DT model, Yi ⊂ Y,βi ≤ βi+1, and
[βi,0,βi,mi] denotes the input range of the i-th feature. Then, we can
characterize the prediction process of a DT model as:

Y = fDT (x) = ϕ1(x1)∩ ...∩ϕn(xn), s.t., Y ∈ Y, (3)

Clearly, there can be only one element in Y , corresponding to the
leaf node of the DT model on which the input falls.

From the observation, the discreteness of DTs determines
that with a high confidence p, there exists a specific feature
range that falls in the piecewise function of T , which makes
the output Y to not deviate as the input is only changed within
the range. We call such a range as constant interval. By utiliz-
ing the unique characteristic of DTs, a discreteness test based
method is proposed in Algorithm 1 to distinguish DTs with
other models in M0. We say that the test passes if and only if
the target model is DTs because any other model in M0 can-
not limit its predictions to be within a finite set. Moreover, the

following condition analysis states that the discreteness test
can always pass if the target model type is DTs.

• If there exists a continuous feature in A, the test passes,
where A is the feature set of f . This is because with small
enough interval and finite DT nodes, the constant interval
can always be found over the continuous feature.

• If all features are discrete but one or more of them is not
contained in the target model, the test passes. At this time,
any input change over the non-related features does not
affect the output.

• If all features are discrete, the test only fails as if for
every (i,ϕi) ∈ T , the piecewise condition of ϕi satisfies
βi, j = βi, j+1−1 for all 0 < i≤ n, 0≤ j < mi. Empirically,
the failure condition can be hardly satisfied by common
DTs.

Above all, we can conclude that SNOOPER can the-
oretically achieve Pr[EXP{DT,M0/DT}(f ,A ,C ,q) = 1] ≈ 1
via the discreteness test, where M0/DT = M0 − {DT} =
{LM,KM,NN}.

Algorithm 1 DT module based on discreteness test.

Require: The target model f , a threshold t to test discrete-
ness, the feature space A and input space Xi for each
feature in αi ∈ A.

Ensure: If the output is 1, f is judged to be a DT model,
otherwise, to be others.

1: Randomly select several data points from Xi to form an
attack pool B.

2: for each (bi,yi) ∈ B do
3: Randomly select a subset A′ ⊂ A.
4: Record the label of bi as yi and set a counter count←

0.
5: for each α j ∈ A do
6: Modify the feature value of bi over α j at a fixed

interval and ensure the modified feature value is still
within Xi.

7: Query the modified data point through the inter-
face of f to get a new prediction y′i.

8: If y′i is equal to yi, update count ← count + 1,
otherwise, reset count← 0.

9: if count > t then
10: return 1
11: end if
12: end for
13: end for
14: As the loop is completed, output 0.

4.2.2 Module for Linear Models

In SNOOPER, what is concerned by the LM module is the
models that can be uniformly formulated into the follow-
ing format, e.g., support vector machine (SVM) and logistic
regression (LR).

fLM(x) = w · x+b, (4)

where w,x ∈ Rkn, b ∈ Rk, k ≥ 1 indicates (k + 1)-
classification, and n is the feature number. For some learning

22 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

tasks, there can also be a sigmoid function [41] to transform
the output space, or a linear kernel function to transform the
input space. While, referring to [4], all kinds of LMs follow
the following observation.

Observation 2 Denote a target model belonging to M0 as f
whose feature space and label space are A = {α1, ...,αn} and L =
{l1, ..., lk}, respectively. If and only if f is a LM, we can get a copy
f ′ of f by solving the equations about k · n+ k input-output pairs,
and f ′ satisfies:

Err(f , f ′,X)≤ ε, (5)

where Err(·) is an error function [4] to evaluate the output distance
between two models, and ε is a negligible error bound. Literally
speaking, in EXPM0(f ,A ,C ,q), the target model belongs to LMs
iff. it is equation-resolvable.

Based on the above observation, we can simply derive
an equation-solving test based LM module, which achieves
Pr[EXP{LM,M0/LM}(f , A ,C ,q) = 1] ≈ 1. Especially, if the
target model is trained for a multi-class task, the outputs ob-
tained from the MLaaS interface are usually masked by the
softmax function. At this time, as suggested by [4], a rever-
sion function should be fitted to unmask the outputs before
solving the equations. Also, the equation-solving test can be
efficiently implemented by common optimizers, e.g., BFGS
and L-BFGS [42].
4.2.3 Module for Kernel Models

We now turn to the models with non-linear kernels. The kernel
function is a common trick to enable LMs to resolve a non-
linear problem by transforming original non-linear inputs to
a higher-dimensional space that is operational for linear algo-
rithms [43]. Due to the unique characteristic, KMs, as a type
of model extended from LMs, are also often discussed sepa-
rately in some MLaaS attacks [4, 5]. Formally, KMs can be
expressed as Equation 6.

fLM(x) = w ·K(x)+b, (6)

where K(·) is the non-linear kernel function. Here, for brevity,
we focus on describing the way for the KM module to de-
tect the Radial-Basis Function (RBF) kernel (or its variants
like the exponential kernel and Laplacian kernel) based KMs,
which is the mostly used in applications. For other kernels,
they can be detected with a similar idea.

To identify KMs, the core idea of SNOOPER is to make
use of the unique mathematical characteristic of the non-
linear kernel function. According to our investigation, RF
kernel, and all other Gauss-type kernels, follow the following
observation.

Observation 3 Denote a target model belonging to M0 as f . If and
only if it is a KM applied with a Gauss-type non-linear kernel, f has
good symmetry. Alternatively, suppose the center point of the RBF
kernel to be µ . A KM model ideally satisfies the following condition.

fKM(µ + x) = fKM(µ− x). (7)

Based on Observation 3, it seems that KM module can
be simply implemented through symmetry test by selecting
proper inputs to compute Equation 7. However, in applica-
tions, the central point µ is usually derived from the training

data, and can hardly be determined by the adversary. To over-
come the problem, we notice that even two inputs x and x′ are
different, there still exists K(x)≈ K(x′) if both of x and x′ are
close to the H or −H , where H represents a huge num-
ber. Therefore, instead of directly computing Equation 7, an
alternative way is to select x→H and x′→−H and do the
symmetry test defined in Equation 8.

|| fKM(x)− fKM(x′)|| ≤ ε, (8)

where || · || is the L1 function to evaluate the distance between
f (x) and f (x′), and ε is a small error bound. Suppose the fail-
ure rate of each test to be pKM . The KM module achieves
Pr[EXP{KM,M0/KM}(f , A ,C ,q) = 1] = 1− pKM .

Remark: In practice, the infinity values can be filled with
the boundary values of the input space for most cases.
4.2.4 Module for Neural Networks

When it comes to NN module, what we concern is only to dis-
tinguish different NN models, i.e., FNN, CNN and RNN. To
detect different architectures of NNs, the NN module follows
the idea of transferability based AE attacks [44]. Intuitively,
as mentioned in Section 2, AEs usually enjoys higher transfer-
ability as the architecture of substitute model does not deviate
a lot from the victim model, i.e., Observation 4.

Observation 4 Given a fixed attack sample set, the transfer rate of
some AE generation algorithms have a correlation with local substi-
tute model. As the architecture of the substitute model is similar to
the remote model, the AEs usually achieve a higher attack success
rate, and vice versa.

Our experiments in Section 5 also validate the above
observation. Based on the observation, we propose a transfer-
ability test based NN module to detection NN types. In the
test, three sets of models FFNN , FCNN , FRNN with different
network architectures are first selected to serve as the lo-
cal substitute models. Then, the adversary generates multiple
AEs on these models, with the same AE generation algorithm.
Given a target model f and a local model f ′, suppose that
there are No AEs that attack f ′ successfully. Among the No
AEs, Nt of them also attack f successfully. Then, the transfer
rate tr is computed as follows.

tr =
Nt

No
×100%. (9)

For each set of models, the one with the highest transferabil-
ity rate is assumed to have the same type of architecture as
the target model. Recall that the goal of the NN module is to
achieve model type detection of NNs. Therefore, SNOOPER
cares nothing about the attack ability of AEs against lo-
cal models (or the target model) but only their sensitivity
to model types. Hence, state-of-the-art AE generation algo-
rithms are not always the best choice to implement NN mod-
ule. For example, in our evaluation (detailed in Section 5),
some classic algorithms, e.g., Fast Gradient Sign Method [45]
(FGSM), achieve a better performance to detect NN model
type. Finally, represent the detection confidence of the NN
module for FNN, CNN and RNN to be pFNN , pCNN and pRNN .
The NN module achieves Pr[EXP{NN,M0/NN}(f , A ,C ,q) =
1] = (pFNN + pCNN + pRNN)/3.

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 23

4.3 Attack Sample Generator

With the modules presented above, it can be concluded that
Generator only has to collect two types of attack samples.

1. Generator randomly select several features and some data
points within the input space. For the selected features,
increase (or decrease) its original feature values at a pre-
defined interval to provide attack samples for the DT
module. The modified feature values should contain the
boundary values for the KM module. Meanwhile, all these
samples can be used in the equation-solving test in the LM
module.

2. Besides the random data points, Generator also needs to
generate some random data points according to the AE
generation rules. These data can be repeatedly used to
search AEs for different types of networks in the NN
module.

Above all, the former three detection modules for DT, LM
and KM can share the same attack sample pool. While, the
NN module needs to generate attack samples independently.
Moreover, all samples queried in the detection stage can also
be utilized to launch other MLaaS attacks. Therefore, in the
real-world black-box scenarios, the overall query complexity
of SNOOPER is much lower than trying every MLaaS attack
method and find the effective one by guessing.

5 Implementation & Experiments
5.1 Environment Preparation

Attack Scenarios. In the experiments, we mainly evaluate
SNOOPER in the following two scenarios.

• Local Simulation. Build a local server that can provide
model prediction service for SNOOPER.

• Real-World Platforms. Use SNOOPER to attack real-world
MLaaS platforms, including Google Cloud1, Amazon Web
Services2, and Huawei Cloud3.

In both of the two scenarios, SNOOPER can only query
the MLaaS interface in the black-box format like a normal
user. That is, SNOOPER needs to provide valid inputs to the
MLaaS interface, and can only obtain the predictions of these
inputs. Except the queries and responses, any other info, e.g.,
decision paths and model type, is untouchable for SNOOPER.
This setting is different from all previous researches. In our
experiments, local simulation is used to do ablation study on
SNOOPER for choosing optimal attack parameters and testing
its robustness.

Datasets. We comprehensively evaluate SNOOPER on
seven commonly used public datasets, including Iris, Adults,
Breast Cancer, Digits, MNIST, Fashion MNIST, and CIFAR-
10. The first four are tabular classification datasets, and the
rest is image classification datasets. The detailed dataset info
is shown in Table 2. These datasets cover the settings of most
MLaaS attack researches [4, 5, 9, 10]. For each dataset, we
randomly choose 80% of data to train model and 20% to
validate model performance.

Models. Totally, we select 975 different models to test the
performance of SNOOPER. For every dataset, there are dif-
ferent models trained for each type of model, all of which
are trained with different hyperparameters. The model info is
listed in Table 3. To ensure fair evaluation, the models pre-
pared for testing SNOOPER are varied from parameter sizes,
degrees of overfitting, optimization strategies, and etc. The
detailed training conditions are given below.

• Linear Models. There are totally 20 LRs and 20 SVMs
with linear kernel trained for each dataset. To obtain differ-
ent LRs, we change: the inverse of regularization strength,
the norm of the penalty, the optimizer, and the iteration
number. To obtain different SVMs, we change: the regular-
ization coefficient, the Kernel coefficient, and the iteration
number.

• Decision Trees. There are totally 10 ID3 models, 10 Ran-
dom Forests, 10 XGBoosts, and 10 AdaBoosts trained for
each dataset. To obtain different decision trees, we change:
the split criterion, the split strategy and the maximum tree
depth. To obtain different forest models, we change: the
maximum number of trees, the maximum tree depth, and
the split criterion.

• Kernel Models. There are totally 20 SVMs with RBF ker-
nel and 20 SVMs with Logistic kernel trained for each
dataset. RBF kernel and Logistic kernel are both non-linear
kernels. To obtain different SVMs, we change: the regular-
ization coefficient, the Kernel coefficient, and the iteration
number.

• Neural Networks. There are totally 15 CNN, 15 FNN,
and 15 RNN trained for MNIST, Fashion MNIST and
CIFAR-10, respectively. To obtain different NN models,
we change: the number of hidden layers, the number of
neurons in each layer, and the number of fully connected
layers.

Table 2: The detailed information of Datasets.

Name Classes Size Features

Iris 3 178 4
Adults 2 49k 14

Breast Cancer 2 659 30
Digits 10 1.8k 8*8

MNIST 10 60k 28*28
Fashion MNIST 10 60k 28*28

CIFAR-10 10 60k 3*32*32

Table 3: Models used for evaluation.

Name Model Type Number

Iris LMs, DTs, & KMs 40 * 3
Adults LMs, DTs, & KMs 40 * 3

Breast Cancer LMs, DTs, & KMs 40 * 3
Digits LMs, DTs, & KMs 40 * 3

MNIST LMs, DTs, KMs & NNs 40 * 3 + 30
Fashion MNIST LMs, DTs, KMs & NNs 40 * 3 + 30

CIFAR-10 LMs, DTs, KMs & NNs 40 * 3 + 30

1https://cloud.google.com/ai
2https://aws.amazon.com/
3https://www.huaweicloud.com

24 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

Especially, we do not train NNs for the former four
datasets because NN is rarely used on these datasets due to
serious overfitting problems.

Evaluation Indicator. There are mainly two indicators
concerned by the evaluation of SNOOPER, namely detection
accuracy and the number of queries (Query). The detection
accuracy show whether SNOOPER can correctly judge the
type of a black-box model. While, Query is a common indi-
cate to evaluate MLaaS attacks, which indicates the cost to
successfully launch an attack. To evaluate these two indica-
tors, we first shuffle the previously trained models randomly
and deploy on the victim interface. Then, the detection re-
sults and query numbers are recorded to compute these two
indicators. Here, detection accuracy is computed as follows.

detection accuracy =
ntrue

ntotal
×100%, (10)

where ntrue denotes the number of models whose types are
detected correctly by SNOOPER, and ntotal is the total number
of models involved in the evaluation.

5.2 Overall Evaluation on SNOOPER

We summarize the overall evaluation result of SNOOPER in
Table 4. The evaluate covers seven datasets and all 945 mod-
els. In the experiments, we first shuffle the order of all models
randomly, and then, deploy these models on the three real-
world MLaaS platforms. SNOOPER is utilized to conduct
black-box detection of the types of all deployed models. The
detection accuracy of each type of models is computed by
measuring the rate of this type of models detected correctly
by SNOOPER. All reported indicators in Table 4 are the aver-
age values on three platforms. Note that the indicators listed
in Table 4 about NN module denote its detection accuracy to
identify different types of NNs (as discused in Section 4).

From the results, the first observation is that SNOOPER
is an effective attack against MLaaS platforms. For each
dataset, SNOOPER achieves almost more than 90% detec-
tion accuracy on every type of models, and 92.14% average
detection accuracy on all models. Moreover, without NN,
SNOOPER only consumes tens of queries (positively related
to the feature number) to complete its attack. While, even
NN is involved, only thousands of queries are required for
SNOOPER to launch attacks. Compared to other MLaaS at-
tacks that always need tens of thousands of queries against
black-box NNs [4, 9, 29, 36], such a cost is totally acceptable,
as the pre-step attack.

Also, to validate the performance SNOOPER, we test it on
three real-world platforms, respectively. Here, an interesting
finding is that in the documents of Huawei Cloud, it is claimed
that the cloud can monitor and block malicious queries to
avoid attacks4. However, our evaluation shows that with our
attack, the model type privacy is still broken successfully.
This is because in current clouds, the defense mechanism
against query-response analysis attacks, like SNOOPER, is
only based on an access control monitor. As well as we con-
trol the query pattern and pay a little more running time, this
defense can be easily circumvented.

Table 4: Overall performance of SNOOPER (Average over
three platforms).

Dataset
Model
Types

Queries
Detection
Accuracy

Total Average

Queries
Detection
Accuracy

Iris
DT 20.01 100.00%

10.11 95.83%LM 2 90.00%
KM 8.31 97.50%

Adults
DT 20.12 97.50%

10.32 90.00%LM 3 80.00%
KM 7.83 92.50%

Breast
Cancer

DT 20.39 92.50%
10.46 89.17%LM 3 77.50%

KM 7.98 97.50%

Digits
DT 20.00 100.00%

30.82 90.83%LM 65 72.50%
KM 7.45 100.00%

MNIST

DT 20.27 97.50%

1790.52 95.76%
LM 785 92.50%
KM 13.95 97.50%
NN 6342.85 95.56%

Fashion
MNIST

DT 20.89 97.50%

1774.79 90.83%
LM 785 82.50%
KM 9.71 90.00%
NN 6283.56 93.33%

CIFAR-10

DT 20.35 97.50%

3971.39 92.57%
LM 2355 80.00%
KM 10.43 95.00%
NN 6342.43 97.78%

5.3 Module Evaluation on SNOOPER

Now, we separately conduct evaluation on each detection
module to give a closer look at SNOOPER. All following ex-
periments mainly answer one essential question: is our design
for each module practically useful to break model type pri-
vacy? Note that for easy analysis, the following experiments
in Table 5 are all conducted with local simulation, utilizing
the same model set as above.

Table 5: Performance on Google Cloud, Amazon Ser-
vices,and Huawei Cloud (Average on MNIST).

Platform Query Detection Accuracy

Google Cloud 1731.41 93.07%
Amazon Web Services 1723.54 91.23%

Huawei Cloud 1767.55 92.69%

5.3.1 Module for Decision Tree

We carry out experiments to validate that DT module can be
used to judge whether a given black-box model is a DT model.
For this purpose, we first investigate the decision curves of
different models. Four models are selected randomly, one
for each type. Then, from the MNIST dataset, we arbitrarily
choose an image, and perturb one of its pixel x0 from x0 to
x0 + δ ·βn where δ is the perturbation ratio, β is maximum

4https://res-static.hc-cdn.cn/cloudbu-site/intl/en-us/CAF/liaoyufei/CloudAdoptionFrameworkTechnicalWhitePaperV1.0.pdf

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 25

value of the chosen feature and n denotes the perturbation
times. Next, the change curve between perturbed inputs and
their corresponding predictions is plotted. In Figure 3, we
show the experimental result with δ = 0.05 and n ∈ [1,100].
From the results, it can be observed that except the DT model,
the predictions of all other types of models hold a tight cor-
relation with inputs. Alternatively, as the input is changed,
the predictions of other models are also changed with a very
high probability. While, the DT model dose not hold the prop-
erty due to its discreteness. The phenomenon validates that
discreteness test is a reasonable way to determine whether a
model belongs to DT.

Furthermore, the above experiment also points out a fact
that the effectiveness of DT module is highly related to the
choice δ . If δ is too large, it is possible to make the discrete-
ness test cross the decision boundary in one step, and lead
to a low detection accuracy. In Figure 4a and Figure 4b, we
show the performance change of DT module with different
δ . The result demonstrates the negative relation of the de-
tection accuracy of DT module with δ . Also, the experiment
shows that this parameter is not hard to tune in applications.
Normally, with δ = 0.01 or 0.05, our DT module is able to
achieve satisfying performance.
5.3.2 Module for Kernel Models

Next, we conduct experiments to explore the effectiveness of
KM module. Recall that KM module is implemented based on
the symmetry test (Observation 3). Hence, to know whether
KM module is practical, we need to investigate the deci-
sion patterns of different models over the whole input space.
Remark that DT module concentrates on the microscopic
characteristic of models, i.e., the prediction patterns over a
very limited input range. Relatively, to understand KM mod-
ule, a higher angle of observation view is required. Thus, we
do an experiment as described below.

Same as before, we arbitrarily choose an image and per-
turb its pixels. The difference is that the pixel is not perturbed
with its original value as the start point but directly replaced
by values changed from the lower bound to the upper bound.
Figure 5 plots the experimental result. Due to space limits,
only the experimental result with MNIST, the most commonly
used testing dataset, is presented. While the models trained
with other datasets obey a similar rule according to our obser-
vation. From the result, we can find that among all types of
models, only the decision curve of KM has prominent symm-

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pr
edi

cti
on

s

P e r t u r b a t i o n T i m e s n

 D T
 L M
 K M
 C N N
 F N N
 R N N

Figure 3: The prediction score distributions for different
types of models with different perturbation times n.

etry. Therefore, it concludes that symmetry test is an effective
way to implement KM module.

Moreover, we test the performance of the SVM module
as setting different error bounds ε (see Equation 8). The ex-
perimental results is depicted in Figure 6a and Figure 6b. It
can be observed that with a lower error bound, SVM module
tends to achieve better performance. This is because a lower
error bound makes SVM module more sensitive to the differ-
ence between different types of models, causing less cost on
detecting the model type.

0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 3 0 . 5

8 0

8 4

8 8

9 2

9 6

1 0 0

De
tec

tio
n A

ccu
rac

y
P e r t u r b a t i o n R a t i o d

 I r i s
 A d u l t s
 C a n c e r
 D i g i t s
 M N I S T
 F a s h i o n

(a) Detection Accuracy

0 . 0 1 0 . 0 5 0 . 1 0 . 2 0 . 3 0 . 5

2 0 . 0

2 0 . 2

2 0 . 4

2 0 . 6

2 0 . 8

2 1 . 0

Qu
ery

P e r t u r b a t i o n R a t i o d

 I r i s
 A d u l t s
 C a n c e r
 D i g i t s
 M N I S T
 F a s h i o n

(b) Query

Figure 4: The detection accuracy and queries of DT module
with different δ .

- 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pr
edi

cti
on

s

P e r t u r b a t i o n

 D T
 L M
 K M
 C N N
 F N N
 R N N

Figure 5: The prediction score distributions for different
types of models with inputs changed from the lower bound to
the upper bound.

26 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

5.3.3 Module for Linear Models

For LM module, we record the performance change of
equation-solving test with increased γ , where γ denotes the
ratio of query-response pairs used for equation solving. As
γ = 1.0, it means that the number of query-response pairs is
identical to the feature number. Clearly, if our design logic is
rational, the performance of LM module should descend with
γ > 1.0. This is because as more query-response pairs are pro-
vided, it is easier for other complicated models, i.e., NNs, to
also enjoy high extraction performances with equation solv-
ing, like LMs. The experimental results shown in Figure 7
support our viewpoint. As γ is less than 1.0, LM mod-
ule achieves similar detection accuracy. With the continuous
increase of γ , the performance of LM is gradually degraded.
5.3.4 Module for Neural Networks

Different from other modules, NN module also provides the
functionality of detecting The NN module is mainly imple-
mented by utilizing the transferability of AEs. To show its
rationality, we experiment with the transfer rates of substitute
model based AE attacks against different types of models.
Specifically, we first prepare nine NNs with different archi-
tectures, including 3 CNNs, 3 RNNs, and 3 FNNs. Then, each
model is chosen as the local substitute model to generate AEs
against every other model. The heatmaps shown in Figure 8
present the Attack Success Rates (ASRs) under each condi-

1 E - 7 1 E - 6 1 E - 5 1 E - 4 0 . 0 0 1 0 . 0 1 0 . 1 0 . 5 1
7 6
7 8
8 0
8 2
8 4
8 6
8 8
9 0
9 2
9 4
9 6
9 8

1 0 0

De
tec

tio
n A

ccu
rac

y

E r r o r B o u n d e

 I r i s
 A d u l t s
 C a n c e r
 D i g i t s
 M N I S T
 F a s h i o n

(a) Detection Accuracy

1 E - 7 1 E - 6 1 E - 5 1 E - 4 0 . 0 0 1 0 . 0 1 0 . 1 0 . 5 1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

Qu
ery

E r r o r B o u n d e

 I r i s
 A d u l t s
 C a n c e r
 D i g i t s
 M N I S T
 F a s h i o n

(b) Query

Figure 6: The detection accuracy and queris of SVM module
with different ε .

tion. It is clear that as the substitute model shares the same
type of architecture with the victim model, the generated AEs
enjoy higher attack success rates. This phenomenon explains
why we can achieve NN model detection via AE transferabil-
ity. Moreover, during the experiments, we notice that existing
works about transferability based AE attacks mostly tend to
find a way to break the dependency of AEs on model archi-
tectures. While, for MTD-A, such an improvement dose not
contribute to the raise of its attack performance. State-of-the-
art AE attack makes it hard to identify the ASR difference
with varied models. Thus, in SNOOPER, we choose an early
scheme, FGSM, to generate AEs.

0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0

De
tec

tio
n A

ccu
rac

y

R a t i o o f Q u e r y - R e s p o i n s e P a i r s g

 I r i s
 A d u l t
 C a n c e r
 D i g i t
 M N I S T
 F a s h i o n

Figure 7: The performance change of LM module with dif-
ferent γ .

F N N 1
F N N 2

F N N 3
C N N 1

C N N 2
C N N 3

R N N 1
R N N 2

R N N 3

F N N 1
F N N 2
F N N 3
C N N 1
C N N 2
C N N 3
R N N 1
R N N 2
R N N 3

L o c a l M o d e l

Ta
rge

t M
od

el

2 5 . 0 0

4 0 . 0 0

5 5 . 0 0

7 0 . 0 0

8 5 . 0 0

1 0 0 . 0
A S R

(a) MNIST

F N N 1
F N N 2

F N N 3
C N N 1

C N N 2
C N N 3

R N N 1
R N N 2

R N N 3

F N N 1
F N N 2
F N N 3
C N N 1
C N N 2
C N N 3
R N N 1
R N N 2
R N N 3

L o c a l M o d e l

Ta
rge

t M
od

el

2 5 . 0 0

4 0 . 0 0

5 5 . 0 0

7 0 . 0 0

8 5 . 0 0

1 0 0 . 0
A S R

(b) Fashion-MNIST

Figure 8: The transferring rates of AEs against different ar-
chitectures of NN models.

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 27

5.4 Why We Need SNOOPER

To validate the threat of model type privacy protection to
MLaaS platforms, we further conduct experiments to test the
performance of different attacks with and without model type
info. In more detail, we implement three different MLaaS at-
tacks, including [4], [21] and [46]. The results are shown in
Table 6.

In the experiments, all attacks are executed in two con-
ditions. First, we run these attacks with SNOOPER. Alterna-
tively, the attacker can know the type of the target model with
SNOOPER to choose a proper attack method. At this time, the
query number is recorded by summing the query costs of both
SNOOPER and the launched MLaaS attack. While, under the
other condition, the MLaaS attack is directly launched with
an unknown target model type. Then, we record the averaged
queries and attack success rates (ASR) after trying each pos-
sible attack method. From the experimental results of Table 6,
it is observed that the application of SNOOPER can decrease
more than half of the cost to launch these MLaaS attacks.
Also, the average ASR is increased significantly. The phe-
nomenon motivates us pay more attention on the research of
model type privacy.

5.5 How to Defend Against Model Type Pri-
vacy Leakage

Finally, we propose two potential ways to defend against
model type privacy leakage caused by SNOOPER, namely
Truncation-based defense and Noise Perturbation-based de-
fense. Both of the two way leverage the fact that SNOOPER is
an attack art developed based on the elegance of the subtleties.
Thus, if the MLaaS platforms can hide subtle information
about model predictions, the attack can be block effectively.
Our two defense are detailed below.

• Truncation. From our design, it can be noticed that most
information about model types is derived from the decimal
part of model predictions. Alternatively, current real-world
MLaaS platforms can give predictions in more than ten-
place decimal precision. In essence, SNOOPER utilizes
this addition info, which is useless to common users, to
launch attacks. Therefore, truncating the extra information
of MLaaS predictions can be an effective way to defend
against SNOOPER.

• Noise Perturbation. Another potential defense way is to
perturb the predictions with noises and block SNOOPER to
get useful information to infer model types. Such a defense
strategy is also widely used in many defenses against other
attacks [47, 48].

Table 6: Model Stealing with and without model type info.

Attack
with Known Model Type with Unknown Model Type

ASR Query ASR Query

[4] 99.99% 3925 23.72% 20933

[21] 96.98% 24384 61.08% 72823

[46] 95.27% 10205 87.68% 21456

Table 7 demonstrates the defense effects of our two de-
fenses. In the experiments, the first defense is implemented
by limiting the model predictions to be in the second decimal
places. As for the second defense, the noise perturbation-
based method, our implementation is slightly different from
previous noise-based defenses [4, 49]. Specifically, to better
preserve the performance of models, we choose a weighted
noise addition strategy. According to the strategy, the pre-
diction scores are treated as perturbation weights. Higher
weights mean higher perturbations (larger random noises)
will be added into the prediction scores. The random pertur-
bations are obtained via Laplacian noises. This strategy has
a noteworthy advantage that the added perturbation does not
change the predicted class but can make the predictions not
to obey its original rule. Such an advantage makes it able to
achieve a satisfactory defense effect while maintaining model
accuracy. Moreover, we record two metrics after applying our
defenses, which are accuracy decrease of the target model
and the detection accuracy decrease of SNOOPER. Our ex-
perimental results show that both two defense can effectively
defend against SNOOPER. While, truncation is easier to im-
plement in practice but has worse defense effect than the noise
perturbation based method.

From the experimental results, we can find that the above
two defenses are both effective against SNOOPER. The differ-
ence is that the truncation-based defense leads less negative
effect on the target model. While, the noise perturbation-
based method achieves better defense effect but causes higher
performance loss to the target model. Choosing which de-
fense depends on the application requirement. As such, our
experiments validate that the model type privacy can be
preserved via some straightforward but effective methods.
In applications, adding these defenses is effortless but can
significantly improve the security of our MLaaS platforms.

Table 7: The performance of SNOOPER with defenses.

Dataset
with Truncation with Noise Perturbation

Acc.↓ Detection Acc.↓ Acc.↓ Detection Acc.↓

Iris 0.6% 64.7% 2.2% 91.3%

Adults 0.5% 64.6% 2.7% 89.3%

Digits 0.6% 64.8% 3.4% 88.9%

MNIST 0.6% 65.2% 4.3% 93.6%

Breast Cancer 0.4% 33.0% 3.2% 91.2%

Wine 0.4% 32.6% 4.7% 90.4%

Acc. means the accuracy decrease of the target model. Detection Acc.
means the detection accuracy decrease of SNOOPER.

6 Conclusion
In this paper, we analyzed the previous attacks against MLaaS
platforms, and revealed a fact that their success was greatly
based on an assumption that the victim model’s type is
known by the attacker. Motivated by this fact, we proposed a
novel attack that could detect the model type via the black-
box MLaaS interface, which we called it as model-type-
detection attack SNOOPER. Several modules were developed

28 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

in SNOOPER, which could be used detect the types of six
mainstream models discussed in previous attacks. Further-
more, we paid a great deal of efforts to train hundreds of
models on 8 datasets and conduct comprehensive experiments
on them. The experimental results validated that our attack
could achieve satisfactory attack effect. Finally, we also gave
our recommendation to defend against the proposed attack.
Extensions to emerging architectures (e.g., Transformers and
ViTs) and adaptive attack scenarios will be explored in future
work.

Funding
This work was supported by the National Natural Science
Foundation of China (62501444, 62261160651, U23A20306,
U23A20307), the Postdoctoral Fellowship Program of CPSF
under Grant Number GZB20250406, the Postdoctoral Re-
search Project of Shanxi Province (2024BSHEDZZ015).

Author Contributions
Conceptualization, Yilong Yang, Xinjing Liu and Yang Liu;
methodology, Yilong Yang; software, Xinjing Liu and Yang
Liu; validation, Ruidong Han; investigation, Yilong Yang ;
resources, Ruidong Han; data curation, Xinjing Liu; writ-
ing—original draft preparation, Yilong Yang and Yang Liu;
writing—review and editing, Xinjing Liu; visualization, Yang
Liu; supervision, Ruidong Han; funding acquisition, Yang
Liu. All authors have read and agreed to the published version
of the manuscript.

Conflict of Interest
All the authors declare that they have no conflict of interest.

References
[1] Xie, S., Xue, Y., Zhu, Y., Wang, Z.: Skyml: A mlaas fed-

eration design for multicloud-based multimedia analyt-
ics. IEEE Transactions on Multimedia 27, 2463–2476
(2025) https://doi.org/10.1109/TMM.2024.3521768

[2] Lin, Y., Zhang, T., Mao, Y., Zhong, S.: Crossnet: A
low-latency mlaas framework for privacy-preserving
neural network inference on resource-limited devices.
IEEE Transactions on Dependable and Secure Comput-
ing 22(2), 1265–1280 (2025) https://doi.org/10.1109/
TDSC.2024.3431590

[3] Wang, X., Liu, B., Bi, X., Xiao, b.: Seam-carving local-
ization in digital images. Journal of Intelligent Comput-
ing and Networking 1(1), 28–42 (2025) https://doi.org/
10.64509/jicn.11.17

[4] Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Risten-
part, T.: Stealing machine learning models via predic-
tion apis. In Proceedings of the 25th USENIX Confer-
ence on Security Symposium, pp. 601–618 (2016)

[5] Chandrasekaran, V., Chaudhuri, K., Giacomelli, I., Jha,

S., Yan, S.: Exploring connections between active
learning and model extraction. In Proceedings of the
29th USENIX Conference on Security Symposium, pp.
1309–1326 (2020)

[6] Shen, Y., Zhuang, Z., Yuan, K., Nicolae, M.-I., Navab,
N., Padoy, N., Fritz, M.: Medical multimodal model
stealing attacks via adversarial domain alignment. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 6842–6850 (2025). https://doi.org/
10.1609/aaai.v39i7.32734

[7] Eisenhofer, T., Schönherr, L., Frank, J., Speckemeier,
L., Kolossa, D., Holz, T.: Dompteur: Taming audio
adversarial examples. In 30th USENIX Security Sym-
posium (USENIX Security 21), pp. 2309–2326 (2021)

[8] Zhang, C., Zhou, L., Xu, X., Wu, J., Liu, Z.: Adver-
sarial attacks of vision tasks in the past 10 years: A
survey. ACM Computing Surveys 58(2), 1–37 (2025)
https://doi.org/10.1145/3743126

[9] Chen, K., Guo, S., Zhang, T., Xie, X., Liu, Y.: Stealing
deep reinforcement learning models for fun and profit.
In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, pp. 307–319
(2021). https://doi.org/10.1145/3433210.3453090

[10] Li, Z., Zhang, Y.: Membership leakage in label-only
exposures. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Se-
curity, pp. 880–895 (2021). https://doi.org/10.1145/
3460120.3484575

[11] Lowd, D., Meek, C.: Adversarial learning. In Proceed-
ings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Mining, pp.
641–647 (2005)

[12] Xie, Y., Gu, Z., Fu, X., Wang, L., Han, W., Wang,
Y.: Misleading sentiment analysis: Generating adversar-
ial texts by the ensemble word addition algorithm. In
2020 International Conferences on Internet of Things
(iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cy-
bermatics), pp. 590–596 (2020)

[13] Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D.,
Ristenpart, T.: Privacy in pharmacogenetics: An end-to-
end case study of personalized warfarin dosing. In 23rd
USENIX Security Symposium (USENIX Security 14),
pp. 17–32 (2014)

[14] Chen, H., Zhang, H., Boning, D., Hsieh, C.-J.: Robust
decision trees against adversarial examples. In Interna-
tional Conference on Machine Learning, pp. 1122–1131
(2019)

[15] Cheng, M., Le, T., Chen, P.-Y., Zhang, H., Yi, J., Hsieh,

https://doi.org/10.1109/TMM.2024.3521768
https://doi.org/10.1109/TDSC.2024.3431590
https://doi.org/10.1109/TDSC.2024.3431590
https://doi.org/10.64509/jicn.11.17
https://doi.org/10.64509/jicn.11.17
https://doi.org/10.1609/aaai.v39i7.32734
https://doi.org/10.1609/aaai.v39i7.32734
https://doi.org/10.1145/3743126
https://doi.org/10.1145/3433210.3453090
https://doi.org/10.1145/3460120.3484575
https://doi.org/10.1145/3460120.3484575

Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30 29

C.-J.: Query-efficient hard-label black-box attack: An
optimization-based approach. In International Confer-
ence on Learning Representation (ICLR), pp. 1–14
(2019)

[16] Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion
attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, pp. 1322–1333 (2015). https://doi.org/
10.1145/2810103.2813677

[17] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Ce-
lik, Z.B., Swami, A.: Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications
Security, pp. 506–519 (2017). https://doi.org/10.1145/
3052973.3053009

[18] Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song,
D.: The secret revealer: Generative model-inversion at-
tacks against deep neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 253–261 (2020). https://doi.org/
10.1109/CVPR42600.2020.00033

[19] Wang, K.-C., Fu, Y., Li, K., Khisti, A., Zemel, R.,
Makhzani, A.: Variational model inversion attacks. In
Proceedings of the 35th International Conference on
Neural Information Processing Systems, pp. 9706–9719
(2021)

[20] Esser, P., Fleissner, M., Ghoshdastidar, D.: Non-
parametric representation learning with kernels. In Pro-
ceedings of the AAAI Conference on Artificial In-
telligence, pp. 11910–11918 (2024). https://doi.org/10.
1609/aaai.v38i11.29077

[21] Miura, T., Shibahara, T., Yanai, N.: Megex: Data-
free model extraction attack against gradient-based
explainable ai. In Proceedings of the 2nd ACM
Workshop on Secure and Trustworthy Deep Learn-
ing Systems, pp. 56–66 (2024). https://doi.org/10.1145/
3665451.3665533

[22] Andriushchenko, M., Croce, F., Flammarion, N., Hein,
M.: Square attack: a query-efficient black-box adversar-
ial attack via random search. In European Conference
on Computer Vision, pp. 484–501 (2020). Springer

[23] Wu, W., Su, Y., Chen, X., Zhao, S., King, I., Lyu, M.R.,
Tai, Y.-W.: Boosting the transferability of adversarial
samples via attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pp. 1161–1170 (2020). https://doi.org/10.1109/
CVPR42600.2020.00124

[24] Suya, F., Chi, J., Evans, D., Tian, Y.: Hybrid batch
attacks: Finding black-box adversarial examples with
limited queries. In 29th USENIX Security Symposium
(USENIX Security 20), pp. 1327–1344 (2020)

[25] Zhou, M., Wu, J., Liu, Y., Liu, S., Zhu, C.: Dast:
Data-free substitute training for adversarial attacks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 234–243 (2020).
https://doi.org/10.1109/CVPR42600.2020.00031

[26] Takemura, T., Yanai, N., Fujiwara, T.: Model extrac-
tion attacks on recurrent neural networks. Journal of
Information Processing 28, 1010–1024 (2020)

[27] Correia-Silva, J.R., Berriel, R.F., Badue, C., Souza,
A.F., Oliveira-Santos, T.: Copycat cnn: Stealing knowl-
edge by persuading confession with random non-
labeled data. In 2018 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.
org/10.1109/IJCNN.2018.8489592

[28] Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat:
Efficient private decision tree evaluation via homomor-
phic encryption and transciphering. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 563–577 (2022). https:
//doi.org/10.1145/3548606.3560702

[29] Rakin, A.S., Chowdhuryy, M.H.I., Yao, F., Fan, D.:
Deepsteal: Advanced model extractions leveraging effi-
cient weight stealing in memories. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pp. 1157–1174
(2022). IEEE

[30] Yu, H., Yang, K., Zhang, T., Tsai, Y.-Y., Ho, T.-Y.,
Jin, Y.: Cloudleak: Large-scale deep learning models
stealing through adversarial examples. In Network and
Distributed System Security (NDSS) Symposium, pp.
1–16 (2020). https://doi.org/10.14722/ndss.2020.24178

[31] Wu, T., Luo, T., Wunsch, D.C.: Gnp attack: Transfer-
able adversarial examples via gradient norm penalty.
In 2023 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 3110–3114 (2023). https://doi.org/
10.1109/ICIP49359.2023.10223158

[32] Gangurde, R.A.: Web page prediction using adap-
tive deer hunting with chicken swarm optimiza-
tion based neural network model. International Jour-
nal of Modeling, Simulation, and Scientific Comput-
ing 13(06), 2250064 (2022) https://doi.org/10.1142/
S1793962322500647

[33] Akhavan, A., Chzhen, E., Pontil, M., Tsybakov, A.:
A gradient estimator via l1-randomization for online
zero-order optimization with two point feedback. Ad-
vances in Neural Information Processing Systems 35,
7685–7696 (2022)

[34] Byun, J., Cho, S., Kwon, M.-J., Kim, H.-S., Kim, C.:
Improving the transferability of targeted adversarial
examples through object-based diverse input. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 15244–15253 (2022).
https://doi.org/10.1109/CVPR52688.2022.01481

https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/CVPR42600.2020.00033
https://doi.org/10.1109/CVPR42600.2020.00033
https://doi.org/10.1609/aaai.v38i11.29077
https://doi.org/10.1609/aaai.v38i11.29077
https://doi.org/10.1145/3665451.3665533
https://doi.org/10.1145/3665451.3665533
https://doi.org/10.1109/CVPR42600.2020.00124
https://doi.org/10.1109/CVPR42600.2020.00124
https://doi.org/10.1109/CVPR42600.2020.00031
https://doi.org/10.1109/IJCNN.2018.8489592
https://doi.org/10.1109/IJCNN.2018.8489592
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.14722/ndss.2020.24178
https://doi.org/10.1109/ICIP49359.2023.10223158
https://doi.org/10.1109/ICIP49359.2023.10223158
https://doi.org/10.1142/S1793962322500647
https://doi.org/10.1142/S1793962322500647
https://doi.org/10.1109/CVPR52688.2022.01481

30 Yang et al. / J. Intell. Comput. Netw. 2025 1(2):17–30

[35] Lu, F., Zhu, K., Zhai, W., Cao, Y., Zha, Z.-J.:
Likelihood-aware semantic alignment for full-spectrum
out-of-distribution detection. Journal of Intelligent
Computing and Networking 1(1), 1–13 (2025) https:
//doi.org/10.64509/jicn.11.10

[36] Tao, J., Shokri, R.: Range membership inference
attacks. In 2025 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), pp. 346–361
(2025). https://doi.org/10.1109/SaTML64287.2025.
00026

[37] Hou, S., Li, S., Jahani-Nezhad, T., Caire, G.: Priroagg:
Achieving robust model aggregation with minimum pri-
vacy leakage for federated learning. IEEE Transactions
on Information Forensics and Security 20, 5690–5704
(2025) https://doi.org/10.1109/TIFS.2025.3577498

[38] Chaudhari, S., Aggarwal, P., Murahari, V., Rajpuro-
hit, T., Kalyan, A., Narasimhan, K., Deshpande, A.,
Silva, B.: Rlhf deciphered: A critical analysis of re-
inforcement learning from human feedback for llms.
ACM Computing Surveys 58(2) (2025) https://doi.org/
10.1145/3743127

[39] Rivera, A., Uribe, J.: Graph based machine learning for
anomaly detection in iot security. Electronics, Commu-
nications, and Computing Summit 3(2), 40–48 (2025)

[40] Adibi, M.A.: Single and multiple outputs decision tree
classification using bi-level discrete-continues genetic
algorithm. Pattern Recognition Letters 128, 190–196
(2019) https://doi.org/10.1016/j.patrec.2019.09.001

[41] Mugunthan, S., Vijayakumar, T.: Design of improved
version of sigmoidal function with biases for classifi-
cation task in elm domain. Journal of Soft Computing
Paradigm (JSCP) 3(02), 70–82 (2021) https://doi.org/
10.36548/jscp.2021.2.002

[42] Chang, D., Sun, S., Zhang, C.: An accelerated lin-
early convergent stochastic l-bfgs algorithm. IEEE
transactions on neural networks and learning sys-
tems 30(11), 3338–3346 (2019) https://doi.org/10.1109/
TNNLS.2019.2891088

[43] Wan, J., Wang, Q., Chan, A.B.: Kernel-based den-
sity map generation for dense object counting. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 44(3), 1357–1370 (2020) https://doi.org/10.1109/
TPAMI.2020.3022878

[44] Zhong, F., Cheng, X., Yu, D., Gong, B., Song, S., Yu,
J.: Malfox: Camouflaged adversarial malware example
generation based on conv-gans against black-box detec-
tors. IEEE Transactions on Computers 73(4), 980–993
(2023) https://doi.org/10.1109/TC.2023.3236901

[45] Nowroozi, E., Mekdad, Y., Berenjestanaki, M.H., Conti,
M., El Fergougui, A.: Demystifying the transfer-
ability of adversarial attacks in computer networks.
IEEE Transactions on Network and Service Manage-
ment 19(3), 3387–3400 (2022) https://doi.org/10.1109/
TNSM.2022.3164354

[46] Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes,
M., De Cristofaro, E., Fritz, M., Zhang, Y.: Ml-doctor:
Holistic risk assessment of inference attacks against
machine learning models. In 31st USENIX Security
Symposium (USENIX Security 22), pp. 4525–4542
(2022)

[47] Hassan, M.U., Rehmani, M.H., Chen, J.: Differential
privacy techniques for cyber physical systems: a sur-
vey. IEEE Communications Surveys & Tutorials 22(1),
746–789 (2019) https://doi.org/10.1109/COMST.2019.
2944748

[48] Lv, Z., Chen, D., Cao, B., Song, H., Lv, H.: Secure
deep learning in defense in deep-learning-as-a-service
computing systems in digital twins. IEEE Transactions
on Computers 73(3), 656–668 (2023) https://doi.org/10.
1109/TC.2021.3077687

[49] Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A.,
Tramer, F.: Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914 (2022). https://doi.org/10.
1109/SP46214.2022.9833649

https://doi.org/10.64509/jicn.11.10
https://doi.org/10.64509/jicn.11.10
https://doi.org/10.1109/SaTML64287.2025.00026
https://doi.org/10.1109/SaTML64287.2025.00026
https://doi.org/10.1109/TIFS.2025.3577498
https://doi.org/10.1145/3743127
https://doi.org/10.1145/3743127
https://doi.org/10.1016/j.patrec.2019.09.001
https://doi.org/10.36548/jscp.2021.2.002
https://doi.org/10.36548/jscp.2021.2.002
https://doi.org/10.1109/TNNLS.2019.2891088
https://doi.org/10.1109/TNNLS.2019.2891088
https://doi.org/10.1109/TPAMI.2020.3022878
https://doi.org/10.1109/TPAMI.2020.3022878
https://doi.org/10.1109/TC.2023.3236901
https://doi.org/10.1109/TNSM.2022.3164354
https://doi.org/10.1109/TNSM.2022.3164354
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1109/TC.2021.3077687
https://doi.org/10.1109/TC.2021.3077687
https://doi.org/10.1109/SP46214.2022.9833649
https://doi.org/10.1109/SP46214.2022.9833649

	Introduction
	Really Black-Box?
	Our Work

	Background
	Model Extraction Attack
	Adversarial Examples
	Other Attacks

	Problem Formulation
	Threat Model
	MTD-A

	Design of Snooper
	Outline of Snooper
	Modules of Snooper
	Module for Decision Trees (or Forest)
	Module for Linear Models
	Module for Kernel Models
	Module for Neural Networks

	Attack Sample Generator

	Implementation & Experiments
	Environment Preparation
	Overall Evaluation on Snooper
	Module Evaluation on Snooper
	Module for Decision Tree
	Module for Kernel Models
	Module for Linear Models
	Module for Neural Networks

	Why We Need Snooper
	How to Defend Against Model Type Privacy Leakage

	Conclusion

