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Abstract: Distributed training over computing power network (CPN) suffers from high round-trip times (RTTs), volatile
bandwidth, heterogeneous accelerators, and non-independent identically distributed (non-IID) data, which collectively lead to
imbalanced collaboration and slow convergence. To address these issues, we propose a heterogeneity-aware distributed training
framework tailored for wide area network (WAN) settings. It adopts a hybrid hierarchical synchronization mechanism that re-
distributes communication load temporally and spatially, thus improving end-to-end training efficiency. In addition, we design
a heuristic algorithm for optimizing the synchronization topology, guided by the computational capacities of training nodes
and real-time network telemetry. We implement a distributed training system and validate the proposed framework through
extensive simulations, demonstrating consistent performance gains across diverse heterogeneous settings.

Keywords: Distributed training; synchronous communication mechanism; resource heterogeneity; computing power network;
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1 Introduction

With the rapid advancement of artificial intelligence, the
scale and complexity of machine learning models continue to
grow, driving an ever-increasing demand for computing re-
sources [1]. Against this backdrop, distributed training has
become essential for large-scale model development. By par-
allelizing training across multiple training nodes, it leverages
geographically dispersed computational and data resources,
significantly reducing training time and improving overall
efficiency.

As a new networking paradigm, the computing power net-
work (CPN) unifies and orchestrates dispersed computing,
storage, and networking resources across wide-area domains
[2]. While CPN offers elastic capacity and data proximity,
real-world deployments exhibit strong heterogeneity across
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multiple dimensions—including compute resources, commu-
nication capabilities, and data distributions—which poses se-
vere efficiency challenges for distributed collaborative train-
ing across nodes [3].

In general, distributed training in the CPN faces three core
challenges:
1) Transmission latency: In an end-edge-cloud framework,
high round-trip times (RTTs) and unstable bandwidth often
dominate end-to-end training cost. Heterogeneous access and
link technologies (e.g., Wi-Fi [4] vs. RDMA [5]) introduce
capacity disparities and volatility, leading to communication
heterogeneity and imbalanced collaboration. Moreover, due
to firewalls, Network Address Translation (NAT), and proto-
col constraints, cross-domain reachability and stable routing
cannot be guaranteed in advance, further increasing the com-
plexity of routing and session management. Even in an ideal
environment equipped with NVIDIA A800 GPU and 10 Gbps
high-speed bandwidth for full parameter fine-tuning of the
GPT-2 model, a single round of weight transmission can still
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take up to 45.9 seconds, accounting for 44.97% of the to-
tal training time. Furthermore, with an RTT of 20ms, the
communication overhead can increase by up to 28.4x [6].

2) Resource heterogeneity and dynamics: In each training
round, the model strictly follows the sequence of forward
pass, backward computation, and parameter update; the next
round can only proceed after the communication in the cur-
rent round is completed. This strong dependency results in a
largely sequential execution of computation and communica-
tion. However, in synchronous data-parallel training, resource
heterogeneity and runtime variability across nodes intensify
straggler effects. Because of substantial hardware and net-
work disparities, effective training throughput can differ by
orders of magnitude across common accelerator and inter-
connect configurations, leading to prolonged synchronization
stalls and reduced cluster-wide utilization.

3) Significant data heterogeneity: In distributed training sce-
narios across multiple data centers, each training node ex-
hibits distinct data personalization, with significant differ-
ences in the number of samples, data quality, and sample
distribution, resulting in a pronounced non-independent and
identically distributed (non-IID) data issue. Consequently,
this leads to conflicting update directions of the local mod-
els and degrades the convergence speed and accuracy of the
global model. A typical example is the cross-region COVID-
19 diagnosis: the severity of the epidemic and case types in
different regions are recorded differently, resulting in extreme
label skew in the distribution of the node data [7]. This skew
makes it difficult for the global model to form an effective
recognition capability for rare case types after aggregation,
which ultimately seriously impairs the global generalization
performance of the model [8].

Existing optimization techniques do not fully address the
core challenge posed by wide-area distributed training, where
communication latency and computational efficiency are non-
linearly coupled in a highly heterogeneous, dynamic network.
Based on the background and challenges outlined above,
this paper proposes a heterogeneity-aware approach to opti-
mize distributed training in CPNs, which adaptively adjusts
the synchronous communication topology of each node ac-
cording to the resource state, leverages edge-side computing
capacity to disperse core-network hotspots and improves the
overall resource utilization of the system. The main contribu-
tions of this paper can be summarized as follows:

* We design a heterogeneity-aware distributed training
framework. For data transmission, this framework adopts a
hierarchical progressive aggregation strategy and performs
along-the-path partial aggregation on tree topologies. For
model updating, the training node applies the data resam-
pling strategy to counter non-IID skew, while the global pa-
rameter server applies a dynamic, fairness-aware step-size
update to stabilize and accelerate convergence.

* We formulate a synchronization topology optimization
problem that accounts for communication overhead and
synchronization consistency requirements. And we de-
sign a heuristic synchronization topology optimization
algorithm to minimize idle waiting and communication
overhead.
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* We deployed the proposed distributed training system
across multiple machines and validated the feasibility and
performance of its synchronization mechanism. Experi-
mental results demonstrate stable and substantial training
acceleration over mainstream synchronous communication
mechanisms across diverse heterogeneous settings.

The rest of this paper is organized as follows. Section 2
reviews recent advances in distributed training optimization.
Section 3 presents the proposed heterogeneity-aware training
framework. Section 4 formalizes the optimization objective.
Section 5 introduces a heuristic algorithm for generating
global synchronization communication topologies. Section 6
presents the experiments and simulations, and the conclusion
is summarized in Section 7.

2 Related Work

2.1 Mainstream Synchronous Communication
Architectures for Distributed Training

Traditional distributed training often relies on the Parameter
Server model, where worker nodes send gradients to a central
server for aggregation. This server then distributes updated
parameters back to the workers. This scheme is simple and
easy to deploy, but it is prone to forming communication bot-
tlenecks and also faces the risk of a single point of failure of
the parameter server [9].

To alleviate the centralized bandwidth bottleneck, a de-
centralized ring-allreduce topology has gradually emerged.
The core idea of the ring topology is to arrange all the
nodes involved in the computation into a ring in a logical or-
der, and the data is passed and aggregated gradually among
neighboring nodes. Han et al. proposed a fair distributed
training framework based on the ring architecture, called
RingFFL [10]. RingFFL achieves efficient parameter aggre-
gation through the ring topology while guaranteeing fairness
among the participants. The framework strikes a good bal-
ance between communication cost and aggregation efficiency,
making it suitable for large-scale distributed training. How-
ever, this ring topology has a strong serial dependency and is
particularly sensitive to latency and bandwidth differences in
inter-node communication. Bandwidth or latency degradation
at any node can slow down the entire ring. In distributed train-
ing, this architecture reduces the burden on the central node
but requires high network conditions, especially in a WAN
environment across data centers.

In response to the WAN bandwidth constraints and high
latency problems exposed by star and ring topologies when
training across data centers, academia and industry have
favored a hierarchical decentralized communication architec-
ture [11, 12]. This architecture utilizes a tree topology to
accomplish in-place aggregation in close proximity to nodes,
thereby reducing cross-domain traffic. It has been shown that
spanning tree is one of the potentially optimal structures for
efficient parameter synchronization. For example, Yuan et al.
designed a LAN-based hierarchical distributed training plat-
form to solve the communication bottleneck problem [13].
The platform avoids the use of intermediate edge servers by
creating local area network (LAN) domain groups in P2P
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mode, and exploits the high bandwidth and low commu-
nication cost of LAN for model aggregation. The FedPAQ
method proposed by Reisizadeh et al. improves the communi-
cation efficiency through periodic averaging and quantization
[14]. The method allows edge nodes to participate in syn-
chronization, which reduces the communication load and
further reduces the communication overhead by quantizing
update messages. Hosseinalipour et al. developed a multi-
stage hybrid federated learning based on fog learning, which
combines a tree topology with a mesh topology by collab-
orating between different network layers to form a local
consensus, and a multi-stage tree hierarchy with multi-stage
Parameter Transfer [15]. Most existing research fails to ac-
count for differences in network resource availability and
nodes’ arithmetic performance, and typically assumes that the
underlying topology is symmetric and homogeneous. This
leads to the use of rigidly structured balanced trees for param-
eter synchronization. Some studies have explored irregular
tree topologies, but these efforts ignore the blocking latency
of intermediate nodes in the optimization objective [16].

2.2 Resource Scheduling Optimization in Dis-
tributed Training

In order to reduce the high communication and system over-
head of distributed training, various communication optimiza-
tion techniques have been proposed in the industry [17], such
as gradient compression and sparsification on the node side
[18, 19], the adoption of efficient communication topologies
(e.g., ring-allreduce [20], three-dimensional hybrid parallel
architectures [21]) to improve the data synchronization effi-
ciency, and confidence-based importance routing and priority
scheduling [22, 23].

However, many communication optimizations for dis-
tributed training are tailored to intra—data-center networks,
which are characterized by high bandwidth and low latency,
and tend to underperform in WAN settings. Under high packet
loss and jitter, sparsifying gradient compression can exacer-
bate stale or missing gradient chunks due to retransmissions
[24]. Latency-bound synchronous collectives (e.g., ring all-
reduce) lengthen time-to-consistency and convergence [25],
while non-IID cross-datacenter data amplifies bias and under-
mines importance-based scheduling [26].

Al training traffic is typically characterized by a small
number of synchronous bursts of large streams, resulting in
low entropy. This leads to the failure of traditional Equal-
cost Multi-path (ECMP) hash routing mechanisms. Traffic
conflicts are severe, network links are unevenly busy or idle,
and effective throughput can be as low as 20% to 50%. To
address these challenges in bandwidth-constrained scenar-
ios, gradient compression is commonly used to reduce the
actual amount of communication data. Wang proposes an
adaptive gradient compression algorithm that adjusts the gra-
dient communication compression rate for distributed nodes
based on multi-dimensional evaluation features in the training
of distributed deep neural networks, thereby reducing train-
ing time under different network conditions [27]. A novel
adaptive Top-K stochastic gradient descent (SGD) framework
is proposed to achieve adaptive sparsity for each gradient
descent step to maximize the convergence performance by
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balancing the trade-off between the communication cost of
distributed training and the model convergence error [28].
The AdaSFL algorithm is proposed to theoretically analyze
model convergence speed, and adaptively control the local
update frequency and different batch sizes per node based
on the upper bound of convergence associated with the lo-
cal update frequency for a given data batch size to improve
the training efficiency [29]. Ling proposes a group hierarchi-
cal architecture that fuses data parallelism (DP) and model
parallelism (MP), considering the heterogeneity of commu-
nication and computational resources as well as the time
dynamics triggered by the competition for resource sharing
The architecture, by implementing two levels of aggregation
at the group level and the system level, effectively reduces
synchronization scales and relieves the traffic pressure on
the bottleneck links, thereby improving the overall training
efficiency [30].

In summary, unlike distributed computing with homoge-
neous nodes inside a single data center, hardware and resource
heterogeneity can turn weak data centers or bandwidth-
constrained links into bottlenecks for synchronous commu-
nication across WANSs. This reveals the difference between
parameter synchronous traffic optimization and traditional
routing optimization problems [31]. Therefore, more effi-
cient traffic scheduling algorithms need to be designed for
large-scale distributed training scenarios.

3 System Description

In this section, we present the system architecture of a dis-
tributed training framework across WANs and explain the
training paradigm and implementation details.

3.1 System Model

For wide-area heterogeneous arithmetic networks, we de-
sign a distributed training framework to support efficient
cross-domain synchronous communication. The overall ar-
chitecture is shown in Figure 1.

global model <---»

— model gradients

—* model parameters

Central parameter server

local model

local dataset

Figure 1: Distributed training paradigm in the CPN.

data center

Figure 1 illustrates a distributed training system, com-
prising a set of geographically dispersed, heterogeneous data
centers, denoted as V.= {1,2,...,|V|}. The sample set of data
for each node is S = {s1,52,...,5v|}. Data centers perform
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on-device training on their local datasets and periodically syn-
chronize their model data. The global parameter server holds
the master copy of the global model, serving as the central hub
for all parameter updates within each synchronization cycle.

In the standard paradigm of synchronous data-parallel
training, the global loss function is defined as:

F vvev 1
W‘Vgpf 5v); M

lsv]
Yuev [sul
and f,(-) is the loss function at node v.

In the 7-th global synchronization cycle, node v receives
the latest global parameters 6; from the server as the ini-
tialization of its local model. Then, node v trains on its
local dataset s, and computes the current-round gradient
V£, (0z;s,). After completing local training, node v transmits
its gradient to the server, which will subsequently aggregate
these gradients to update the global model parameters. The
updated global parameters are then synchronized back to all
nodes as initial parameters for the next round of local training.

This periodic synchronous mechanism allows the data
center to collaboratively train a global model without the need
to collect raw data. However, the severe data heterogeneity
and resource heterogeneity across nodes in the CPN pose a
substantial challenge to model convergence efficiency.

where p, = denotes the data-size weight of node v,

3.2 Data 3-resampling Mechanism

To address the model performance degradation caused by
skewed or disjoint label spaces, we adopt a data resampling
strategy based on the inverse effective number of samples
[32]. This method aligns the class sampling probabilities
across all nodes, thereby mitigating the adverse effects of
non-IID data and promoting stable model convergence.

Let node v hold dataset s,, and let the set of class labels be
% ={1,2,...,Y} with Y being the total number of classes.
Suppose the label of the i-th sample in s, is ¥ (v,i). We define
the sampling weight of this sample as

1—
pi=——b @)
1— B Y (v.i)

where N;m.) denotes the number of samples with label

Y(v,i) in sy, and B € [0, 1) is a hyperparameter of resampling
strength.

Then the probability that node v selects its i-th sample for
training is

'}/v,i
Lies, Wl @

This resampling mechanism enables each node to balance
label distribution locally without accessing other nodes’ data,
thereby adhering to data privacy requirements.

Pvi=

3.3 Hierarchical Aggregation Transmission
Mechanism

A hierarchical progressive aggregation strategy is adopted
in the proposed distributed training framework to align the
upper-layer synchronous communication logical topology
with the underlying physical network.
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Figure 2 illustrates the dataflow logic within a synchro-
nization cycle, which consists of the following five key steps.
First, the global parameter server distributes the latest model
parameters to the root node. These parameters are then prop-
agated hierarchically to all nodes in the tree, serving as
initial parameters for their current training round. Each node
performs local training in parallel to compute its own gradi-
ents. During the gradient synchronization phase, gradients are
propagated upward from the leaf nodes and aggregated along
the way. Each internal node receives gradients from its child
nodes, performs local aggregation, and forwards the aggre-
gated result to its parent node. Finally, the root node sends
the domain-wide aggregated gradient to the global parameter
server to update the global model. Upon receiving the up-
loaded gradients, the parameter server updates global model
parameters and stores the latest snapshot. This hierarchical
forwarding mechanism fully exploits the available bandwidth
of idle links without increasing the total communication vol-
ume, effectively avoiding traffic hotspots and port contention.
The resulting tree-like logical topology is referred to as the
aggregation-tree.

\%
@ local tralnmg €= @ distribute 6,

update model
e 0 0741

(3) reportA (CB) @ oo

~— —
) [
o = <

O Agrregation

iy @/ WAN

= B
Figure 2: Workflow of hierarchical aggregation transmission
mechanism.

Given an aggregation-tree topology k, with root node r,
each internal node u performs a weighted aggregation of its

own gradient and those from its children Ch(u). Let k$*°,, de-

note the subtree of k, rooted at u and V(k°,) denote the set

i J-sub
of nodes in k%3,

We define the aggregation weight @, , as

|s7n| ifn=u
ZieV(ki“_‘fu) |si
Wy = ; (4)
Licvign,) |51 Vn € Ch(u)
ZleV(k;ugu [sil”

where |s;| is the sample size of node i.
The weighted aggregated gradient computed at node u,
denoted by V#8(8;) is given by

Vagg Z wun 91: +wuu u(er)
nGCh
5
Zzer;lg) (Isil Vi(62)) ©)

)

ZieV(k;lgu Isi
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where V,,*(8;) denotes the gradient reported by child node n.
When Ch(n) = 0, V;;?(8;) = V,,(8:); otherwise, V;;*(8;) =
ViEE(0;).

Similarly, the final aggregated gradient submitted by node
r to the global parameter server is

Lievk,) (Isil Vi(6:))

):zeV k) |si

6)

VI‘CP ( 9‘[ )

3.4 Hybrid Asynchronous Aggregation Forest

However, the hierarchical aggregation topology remains vul-
nerable to stragglers; we therefore partition nodes by compute
capacity and build a separate aggregation tree for each subset,
forming an aggregation forest in which every tree carries the
full gradient tensor.

Because different aggregation-trees have different syn-
chronization periods, global updates are performed in an
asynchronous manner across trees. As illustrated in Figure 3,
each aggregation-tree performs synchronous local aggrega-
tion along its own routing paths, while the parameter server
incorporates the updates from different trees whenever they
arrive. As a result, each round of global parameter evolution
only depends on the subset of nodes that has just finished syn-
chronization. Allowing aggregation-trees to synchronize on
their own schedules leads to asynchronous global updates and
makes the system more tolerant of nodes with limited com-
pute or network capacity. We term this scheme—synchronous
aggregation within each tree and asynchronous updates across
trees—the hybrid asynchronous aggregation forest (HAAF)
synchronization mechanism.

Aggregation-Tree 1

1 " Aggregation-Tree 2
00TV G 0, | VA0, 0, 0,-T

«---e----F<---

0

Aggregation-Tree 1\

Figure 3: Framework of hybrid asynchronous aggregation
forest.

Aggregation-Tree 2

To ensure an unbiased global update direction, we must
account for each node’s contribution to model improvement
from multiple aspects, balancing efficiency and fairness.

1) Fairness weight function: Since aggregation-trees with
higher-performance nodes update the model parameters more
frequently, they can dominate training, causing the global
model to drift toward their local data distributions and conse-
quently hurting generalization. To counter this, we introduce
a fairness weight function that increases the contribution
of lower-performance, higher-loss nodes, thereby reducing
accuracy variance.

In the early phase, high-frequency aggregation-trees,
through rapid local iterations, pull the global parameters
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quickly toward the global optimum. Later, these trees stay
near their local optima and produce small gradients, while
low-frequency trees remain farther from their optima and
yield larger gradients that help escape suboptimal local min-
ima.

The global objective can be approximated as

min y P et (g, %

where, analogous to data-size weights at the node level, P, =

Z),:evms\ | sl denotes the data-size weight of aggregation-tree k;
i€

K is the set of aggregation-trees, and g > 0 is the fairness fac-
- g ; 2]
tor hyperparameter. f;(6) = %}J)‘I()

over all nodes in aggregation-tree k.

is the average loss

Theorem 1 Assume the gradient of the nonnegative model loss
Sunction f(-) is L-smooth, i.e.,

FO) = () <(Vfx),y—x) +

It can be proven that for any q > 0 and any point 0, the
function qurl f q+1(~) has a local gradient Lipschitz constant at 0
upper-bounded by

Ly(6) = Lf(6)7+4f(6)" " |Vf(0)[*.
The detailed derivation is provided in the referenced literature
[33].

L
\Z =y —x)?
X,, ) fly — x|

Consequently, we introduce a fairness weight function
w;a“ based on Theorem. 1

W (VF, (6:): Vi(6))
- LF{ (6:) (®)
LEZ(0:)+ £ (8:) [IVIP ()2

where L is a Lipschitz constant of the gradient of f(-). The
fairness weight depends on the average loss and the aggre-
gated gradient of aggregation-tree k,, both of which evolve
with the training dynamics and naturally induce an adaptive
step.

0100 — AVFy,(Bog) 6101 — AVF,(899)

| v
6101
VF, (690) .

Figure 4: Gradient staleness in asynchronous updates.

2) Staleness weight function: Due to the weak consistency
among aggregation-trees in the asynchronous algorithm, gra-
dient staleness is inevitable [34]. As shown in Figure 4,
gradients arriving through slower aggregation paths are com-
puted with model parameters from earlier rounds. This will
induce oscillations in global training and degrade model ac-
curacy. To mitigate such adverse effects, we introduce a
polynomial staleness weight function @®'° [35], defined as
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o ()= —t+1)7, )
where a > 0 is the staleness factor, controlling the decay rate;
t denotes the current global synchronization round, and 7 in-
dicates that the aggregated gradient received by the parameter
server at round ¢ was computed using the global model pa-
rameters from round 7. When ¢ — 7 = 0, there is no gradient
staleness.

Thus, combining the fairness factor and staleness factor,
the global parameter update can be expressed as

611
=6, — P, - 0" (fi, (62): VP (6r)) - 05 (1:7) - ViP(6:)
(Ticvk,) i) LA (60)(t = T+1) 74V, P(6;)

Eievlsil (L7 (80 +a 7 (02 V(61 2)
(10)

-6 —

4 Problem Formulation

In this section, we analyze the routing optimization problem

in the HAAF mechanism. First, we define synchronous delay

into the following four types:

* Data transmission latency: The sum of link transmission
latencies along the end-to-end communication path.

* Synchronization blocking latency: The stall time at non-
leaf node while waiting for straggler children.

* Computation blocking latency: The stall time at non-leaf
node due to unfinished local computation.

* Aggregation operation latency: The time consumption for
the aggregation operation.

In summary, the synchronization latency of an
aggregation-tree includes not only the transmission latency
along the routing path, but also the latency caused by com-
puting blocking due to straggler effect and aggregation
operations. An illustration of the various latencies is given in
Figure 5.

U w
A T
©) ®)

(a) Data transmission latency (b) Synchronous blocking la-

tency
oo
[N
oD o —om
(mmm] o
T AW T 4w
o 00 O 010
(c) Computation blocking la- (d) Aggregation operation la-
tency tency

Figure 5: Schematic of synchronization latencies.

Since in real distributed training scenarios, the aggre-
gation operation in distributed systems is done by highly
optimized communication libraries (e.g., NCCL [36]), the
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processing latency is negligible compared to other types of
latency. Therefore, for simplicity, node processing latency is
not considered here.

The global parameter server updates the model parame-
ters, and then pushes them back to the root node. We take the
moment when the server broadcasts the updated parameters
as the beginning of the synchronization cycle and denote the
moment at which a node submits parameters to its parent as

ty + Tiare if Ch(v) =0

\4 _

send — y (11)
max {7, t,+ Ty, }, otherwise

where #, is time consumption for local training and T, is
the moment when node v receive updated parameters and start
training. T, = MaX,cch(y) (Y;'én 4+ dtrans(en%v)) denotes the
moment when non-leaf node receives all children’s data, and
dirans (€q—y) represents the transmission latency from node n
to node v.

The synchronization period of aggregation-tree k, can be
expressed as

dk, = Srgnd + dtrans(r)a (12)

where digans (r) is the transmission latency from root node r to
the global parameter server.

Define the longest waiting time within a single cycle
among all nodes as synchronization latency. The synchroniza-
tion latency of aggregation-tree k, is

lk :dk — min
" "oveVik)

send (13)

To maximize system utilization while mitigating weak
inter-node consistency under asynchronous updates, the map-
ping strategy for matching training nodes to the aggregation-
tree must be specified meticulously. Let X = [x¢]rcx denotes a
joint mapping strategy. Then the global optimization objective
is defined as follows

Hgn A Y e(xi) + Ap Std([die(xe) ke ),
keK

T
s.t. X = (xl‘,k,xz_’k, ... ,xWLk) , Vk e K,

va,kz 1, Vvev,
keK
X €4{0,1}, VveV, Vkek,

(14
where the first term of the global objective function is the to-
tal synchronization latency across all aggregation-trees, while
the second term is the standard deviation of aggregation
periods among the trees. /;(x;) and di(x;) represent the syn-
chronous latency and period of aggregation-tree k under its
mapping strategy X, respectively, which can be calculated
based on Eq. (12) and (13). The binary variable x, indicates
whether node v is assigned to aggregation-tree k. Specifi-
cally, x,x = 1 means node v belongs to aggregation-tree k.
The coefficients A; and A, are weight factors used to balance
dimensions.
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S Solution Algorithm

In this section, we tackle the optimization problem using a
heuristic algorithm that constructs an optimal topology for
synchronization communication logic.

5.1 Fastest Aggregation Topology Construc-
tion

Traditional shortest-path algorithms typically weight links by
transmission latency to find routes with sufficient bandwidth
to support fast end-to-end data flows while avoiding con-
gestion on low-bandwidth links. However, the synchronous
routing discussed here is a logical communication topology
decoupled from the underlying physical bearer network. Traf-
fic on an aggregation-tree is not a simple end-to-end stream;
instead, it proceeds hop by hop and incurs synchronized
blocking latencies at internal nodes.

Given a fixed node set for a tree, we design an algorithm to
construct the synchronization communication logical topol-
ogy solely from the perspective of data transmission latency,
ignoring node-local computation time, as shown in Algo-
rithm 1. Because synchronization latency is determined by
the maximum leaf-to-root path latency, and the downstream
(broadcast) and upstream (aggregation) phases are symmet-
ric, the problem of finding the most efficient aggregation-tree
topology reduces to a min—max objective: minimizing the
latency of the slowest path.

Algorithm 1 iterates over all nodes to construct a set of
aggregation-tree routing paths. For each ordered node pair

Algorithm 1 Candidate Topologies Construction Algorithm
Require: Undirected graph ¥ = (N,E);

Link transmission latency matrix [d(e)].cr

Ensure: Candidate tree topology set .7 = [Tj]ien

1: fori € Ndo

2: P+0

3: for j e N\ {i} do

4 Calculate node sequence p;_,; of shortest path
from node i to node j using Dijkstra’s algorithm

5: P, < P U{pi-j}

6: end for

7: Merge duplicate sequences in P; to generate directed
topology T;

s: end for

9. return 7 = [T]jen
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(i,j) in graph & = (N,E), we apply the shortest-path search
algorithm (Dijkstra) to find the fastest aggregation path from
node i to node j. The path is returned as a node sequence p;_, ;,
with a time complexity of O(N?), N is the number of nodes
in N. If a node on the path does not belong to the node set
of the corresponding tree, it is treated merely as a relay node
and therefore is not recorded into the sequence p;_, ;. Collect
these paths and record them in the set P. Each path in P rep-
resents the shortest aggregation path between a pair of nodes,
ensuring that parameters can be synchronized along the route
with minimal latency.

Algorithm 1 guarantees the shortest end-to-end path trans-
fer latency from each node to the root node in the aggregation-
tree topology. Moreover, when we extend the analysis to
include node-local computational blocking, we can prove that
the synchronization latency achieved by Algorithm 1 is no
greater than that of any other topology with the same root,
once per-node computational blocking is taken into account.

When node computational blocking is ignored, Figure
6(a), which is the output of Algorithm 1 for the given network,
achieves lower synchronization latency than Figure 6(b). Fur-
thermore, after incorporating computational blocking as in
Figure 7, and fixing node 5 as the root while node 2 is the
straggler, the difference in synchronization latency between
the two aggregation-trees is determined solely by the time re-
quired for parameters to propagate from node 2 to the root;
it is independent of the communication topology among node
2’s predecessors. Therefore, the path from node 2 to the root
must be the shortest path. In this case, multiple topologies
may attain the same optimal value, but the aggregation topol-
ogy produced by Algorithm 1 is guaranteed to belong to the
optimal solution set.

Algorithm 2 Optimal Aggregation Topology Selection Algo-
rithm

Require: Candidate aggregation-tree set .7 ;

Node set Nin ¢;

Local computing time matrix [t,],en

Ensure: Optimal aggregation-tree topology 7,

1. forn € Ndo

2: Calculate synchronization latency Iz, for tree topol-
ogy T, € 7 via Equation (13)

3 Select topology with minimal latency, set root node:
r <= argmin,cy I,

4. end for

5. return 7,

(a) Fastest topology (b) Random topology

Figure 6: Aggregation-tree topology optimized for transmis-
sion latency only.

(a) Fastest topology

(b) Random topology

Figure 7: Aggregation-tree topology under computational
blocking.
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Iterate over each candidate topology in set 7 output
by Algorithm 1 sequentially and compute the corresponding
synchronization latency. The topology with the minimal la-
tency is selected as the optimal aggregation-tree, as shown in
Algorithm 2.

5.2 EDA-based Topology Optimization Algo-
rithm

In this paper, we propose a combinatorial optimization al-
gorithm for aggregation under complex and heterogeneous
computing-network environments. Given that the global op-
timization objective is an implicit black box with respect to
the decision variables, we employ a probability-model—driven
metaheuristic—the Estimation of Distribution Algorithm
(EDA)—to address the optimization problem formulated in
Section 4. Furthermore, to avoid the limitation imposed by
using a fixed number of aggregation-trees as a hard constraint
on network strategy optimization, we design a lightweight
two-stage coarse-to-fine search scheme to explore the suit-
able upper limit of the aggregation-tree number. The outer
stage performs candidate selection and refinement over the
upper-bound set . pqrse = {1,...,Mmax} to obtain a near-
optimal upper bound m*; the inner stage executes an EDA-
based combinatorial strategy search with a fixed number limit
of aggregation-trees. The detailed methodology is presented
below.

1) Inner layer optimization: Unlike genetic algorithms,
differential evolution applies difference-based mutation,
crossover, and typically greedy survival selection at the indi-
vidual level. EDA refines samples to estimate and update a
probabilistic model, accumulating information across genera-
tions to guide the search. By tuning distributional parameters
rather than solution parameters, EDA can more explicitly
balance exploration and exploitation, thereby avoiding oscil-
lation and premature convergence.

* Encoding: Given the number of all training nodes N and the
upper bound on the number of aggregation-trees Kp,x, the
categorical matrix O = [o0,4] € RV *Kmax in which each gene
o, represents the preference of node v to aggregation-tree
k. We map O to a probability matrix D = [rX] € RV Kmax
via the softmax transformation, where X denotes the dis-
crete probability of matching node v with aggregation-tree
k

Kk exp(ow)
v - KlTlElX
Y exp(ov)
Kmax

Then, generate a one-hot selection vector x, = [x, ], ™
as a mapping strategy for each node by sampling under
probability distribution [¥];ck, ..

. (15)

1, k=argmax; m¥
%kz{ gmaxe my (16)

0, otherwise

* Fitness evaluation: For a given strategy X = [x,],en,
partition nodes into subsets [V(k)] kek,,, and construct
aggregation-trees according to Algorithm 1 and 2, and then
compute the fitness F(0), see Eq. (14).
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* Population update: Let the current generation index be g.
Rank population by fitness in descending order and select
the top-7/ individuals as the elite subset S(g), where 1 is
the population size and 7 € (0,1] is the truncation ratio.
The empirical mean and covariance of the elite set S(&) are
estimated as

1
&) = —
u® = x, (17)
7 L
y(e) — 1,'11—1 Z (X—LL(g))(x—/J.(g))T. (18)

xes()
To enhance numerical stability and maintain diversity, we
add a diagonal jitter term nI (n > 0, I is the identity
matrix), yielding

£ = x84 I (19)

Then, wuse the multivariate normal distribution
N (u(g>,i(g)) as the generator for the next genera-
tion. Specifically, draw {x§g+1)}{:1 independently from
N (u(g>,i(g)), evaluate their fitness, and replace the old
population accordingly. To ensure elitism, the current best
individual is directly copied to the next generation. Re-
peat this process until the strategy converges or reach the
maximum number of generations.

2) Outer layer optimization: To adapt the scale of
aggregation-trees to distributed training scenarios with differ-
ent model sizes, we adopt a lightweight two-stage outer-layer
model selection scheme to determine the number of global
aggregation-trees.

In the coarse search stage, iterate over Ky € A oarse
and independently run the inner-layer EDA with a small
population size I. and a small maximum number of genera-
tions G, recording the resulting objective F (O | K;4x) as the
performance estimate f°“*¢(K4y).

In the fine search stage, we select the top-¢ candidates by
performance

%fine = Top_t{ [fcv(lrse (I(max)]Kmaxe-///marse } . (20)

Conduct a deeper search on .#/;,. using a larger total
number of generations /; and a larger total generations Gy.
We again record F(X | K,,,.) as the performance estimate
frie(K, ) for each K., in Mfine.

The final upper bound on the number of aggregation-trees
is set to
FI (K ) 1)

m* =arg min s

/
Kmaxe'/”ﬁne

And the final mapping strategy is denoted as

X" = argm}zile(X| m"). (22)

The overall algorithmic workflow of the EDA-based node
mapping with coarse-to-fine search and the construction of
aggregation topologies is shown in Algorithm 3.
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Algorithm 3 EDA-based Topology Optimization Algorithm

Require: Upper-bound set .#,4s.; Truncation ratio 7; Hy-
perparameters (I.,G.) and (Iy,Gy); Top-t shortlist size t; The
number of training nodes N
Ensure: Optimal node mapping strategy X*

1: for Koy € M oarse do

2 Set (1,G) < (I, G,)
Generate initial population & ©) = {OEO) 11‘:1

3:

4: for g=0to G do

5: fori=1to/do

6: Compute discrete probability matrix D =
[ﬁ"lf] c RN *Kmax

7: X' = [xlveqr,..

8: Partition nodes into subsets [V (k)] KKy

9: Construct aggregation-tree topology by Algo-
rithm 2 for each V(k)

10: Evaluate fitness F (O;) based on Equation (14)

11: end for

12: Update population

13: end for

14: Record converged best fitness as performance esti-
mate fcoarse ( Kmax)

15: end for

16: Select M fine

17: Set (1,G) < (I, Gy)

8. for K, € M tine doO

19: Repeat the inner scanning (lines 4—15) with (I, G) to
obtain £/ (K’ )

20: end for

21 m* argming o 4.

22: Decode the best X* corresponding to m*

23: return X*

ffine (K/

max )

6 Performance Evaluation

To verify the effectiveness and scalability of the proposed
heterogeneity-aware distributed training framework, we built
a distributed platform that integrates the data resampling
mechanism and the hybrid asynchronous aggregation forest.
We then ran simulation experiments to evaluate the per-
formance of the heuristic aggregation-topology optimization
algorithm.

6.1 Experimental Setup

We deploy the distributed training platform on four physi-
cal hosts, whose hardware configurations are summarized in
Table 1.

Table 1: Hardware configuration of experimental platform

Device Model
LAPTOP-7GI3C08C

Component
13th Gen Intel(R) Core(TM) i5-13420H
Intel(R) Core(TM) i7-10875H
NVIDIA TU106M (GPU)
Intel(R) Xeon(R) Gold 5218R
NVIDIA L40 (GPU)
13th Gen Intel(R) Core(TM) i7-13620H

ROG Strix G512LV

Dell R740xd Server

DESKTOP-RPI1IKUU
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On each host, we launch multiple training processes to
emulate a total of 12 collaborative training nodes. An addi-
tional process plays the role of the global parameter server,
which maintains the master copy of the model and performs
global aggregation. Another control process acts as the master
coordinator, issuing commands to training nodes, collecting
runtime statistics, and orchestrating data exchange. To em-
ulate heterogeneous WAN conditions, we inject link delays
at the code level. The inter-node bandwidth is set between
1 Gbps and 10 Gbps, and the one-way link latency between
nodes is randomized in the range of 10-50 ms.

We train a customized CNN-6 model on the CIFAR-
10 dataset and adopt a Dirichlet-based partitioning strategy
to simulate label-distribution skew across training nodes.
For each class k in CIFAR-10 dataset, we sample a client
allocation vector py ~ Dirichlet(ot1N), where 1N is an N-
dimensional all-ones vector and « is the Dirichlet concen-
tration parameter. Smaller o leads to more skewed class
distributions, whereas larger o yields more balanced parti-
tions.

We compare the proposed hybrid asynchronous aggrega-
tion forest (HAAF) mechanism against three synchronization
baselines: Parameter Server (PS): All workers send gradi-
ents to a central server, which aggregates them synchronously
and broadcasts the updated model. AVL Tree (AVL): A bal-
anced binary aggregation-tree in which each internal node
has at most two children and the depths of leaf nodes dif-
fer by at most one. Fastest Aggregation Tree (FAT): A single
aggregation-tree constructed via a shortest-path heuristic that
minimizes transmission latency, but ignores heterogeneous
local training times.

For all methods, the local mini-batch size at each node
is set to 128 and SGD is used as the local optimizer with an
initial learning rate of 0.01. The Lipschitz constant of the gra-
dient is set to L = 100. By default, the Dirichlet concentration
parameter is & = 1, the resampling parameter is § = 0.999. In
asynchronous updates, the staleness and fairness factors are
a = 0.8 and g = 1, respectively. And the weight coefficients
in the global optimization objective are set to A; = 0.5 and
Ay =0.1.

6.2 Simulation Results and Discussion

To intuitively illustrate the convergence behavior of each
node under the HAAF architecture, we track the gradient
trajectories of multiple nodes on two training tasks: (i) a
CNN-6 model on CIFAR-10 and (ii) a LeNet-5 model on
Fashion-MNIST. For each task, we apply PCA to project
high-dimensional gradient onto two principal components
and visualize the trajectories of three root nodes in the
aggregation forest.

Under the given aggregation topology, the aggregation
forest consists of three trees rooted at nodes 1, 6, and 11,
whose synchronization periods increase in this order. As
shown in Figure 8§, the tree rooted at node 11 has the short-
est aggregation period, so its local model quickly approaches
a good local optimum in the early training stage. By con-
trast, the tree rooted at node 1 aggregates less frequently; its
loss remains relatively high in later stages and occasionally
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Gradient Trajectory in PCA Space (node1)

Gradient Trajectory in PCA Space (node6)
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Gradient Trajectory in PCA Space (node11)

Time Step

PC2 (Principal Component 2)
o

PC2 (Principal Component 2)
o

0 *
2 20 2
]
0 ‘. 10 0
* st K start
End End
mEE 0 » ,
30 25 -20 -15 -10 -5 0 5 10 -30 -20

PC1 (Principal Component 1)

(a) Gradient trajectory of node 1 for CNN-

6 on CIFAR-10 6 on CIFAR-10

Gradient Trajectory in PCA Space (node1)

-10

PC1 (Principal Component 1)

(b) Gradient trajectory of node 6 for CNN-

Gradient Trajectory in PCA Space (node6)

Time Step
PC2 (Principal Component 2)
IS o ® > ]
Time Step

N

‘
2 s 0 5 0 5
PC1 (Principal Component 1)

-

0 10 -25

(c) Gradient trajectory of node 11 for
CNN-6 on CIFAR-10

Gradient Trajectory in PCA Space (node11)

‘ K start

8 e
°?

o

[
N
wn

*

o B

w IS

8 8
Time Step
s 4
> w o

3
N
S

PCZ (Principal Component 2)
N
n

PC2 (Principal Component 2)

3
w
o

K start

* st 0
s 8 End 0 8 &nd
By
N

It
g
Time Step

IS
PC2 (P'rincipal Component 2)

o
N
n

30 25 20 -15 -10 5 0 5 =40 e -20

PC1 (Principal Component 1)

10

(d) Gradient trajectory of node 1 for
LeNet-5 on Fashion-MNIST
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Figure 8: Gradient trajectories of the three root nodes in PCA space for two representative model-dataset pairs. Panels (a)—(c)

correspond to one pair and panels (d) — (f) to another.

pulls the global model away from local minima, enabling fur-
ther exploration of the loss landscape. Similar convergence
patterns are observed across the two models, indicating that
HAAF is robust to changes in model complexity and dataset
characteristics.

We next compare the convergence behaviors of four syn-
chronization mechanisms under different levels of system
heterogeneity. For each node, we measure the per-sample pro-
cessing time and compute the Gini coefficient to quantify
imbalance in computational capacity. A higher Gini coeffi-
cient signals a more severe imbalance, whereas a lower one
reflects a more balanced and homogeneous system.

As shown in Figure 9, when Gini = 0.1 the system
is nearly homogeneous and all mechanisms achieve similar
convergence times. As heterogeneity increases, however, the
straggler effect significantly slows down PS, AVL, and FAT,
resulting in longer synchronization period and reduced over-
all throughput. In contrast, HAAF dynamically adapts the
aggregation logic and effectively mitigates straggler-induced
stalls. When Gini = 0.6, HAAF shortens convergence time
by around 40% while maintaining comparable final accuracy;
the slight accuracy loss is acceptable given the substantial
improvement in convergence speed.

We then examine the sensitivity of the staleness factor
a under two representative heterogeneity levels, Gini = 0.3
and 0.6, using fully synchronous PS and asynchronous PS
as baselines. The results in Figure 10 show that fully syn-
chronous PS achieves the highest final accuracy but converges

the slowest due to strict synchronization. Asynchronous PS
converges faster but suffers noticeable accuracy degradation,
especially under strong heterogeneity. With the polynomial
staleness weighting, HAAF substantially accelerates con-
vergence while keeping the final accuracy close to that of
fully synchronous PS. For a € (0,1), the accuracy differ-
ences between different a values are small, and all HAAF
configurations consistently outperform the asynchronous PS
baseline.

To study the fairness—efficiency trade-off, we vary the
fairness factor g and measure both the node-wise accuracy
variance and the final test accuracy, as shown in Figure 11.
When g = 0, the global model update does not account for
performance fairness across aggregation-trees. In this case,
the variance of per-node convergence accuracy increases
sharply with the heterogeneity level, since high-performance
trees dominate the global update direction. Introducing the
fairness weight function (¢ > 0) significantly suppresses this
variance and alleviates parameter drift. At the same time, the
test accuracy of the global model is preserved or even slightly
improved. Under the highly heterogeneous setting (Gini=0.6),
increasing g from O to 5 reduces the accuracy variance from
19.2 to 11.81, while the final test accuracy improves from
69.5% to 77.07%. similar trends are observed for Gini=0.3,
where the variance drops from 15.7 to 7.8 and the test ac-
curacy can reach up to 79.5%. Moreover, the accuracies for
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q=0.5,qg=1, and g = 5 are very close in both settings, in-
dicating that HAAF is insensitive to the exact choice of the
fairness factor as long as it is set to a moderate value.
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Figure 9: Test accuracy over time under different synchro-
nization mechanisms and system heterogeneity levels.
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Figure 10: Impact of staleness factor a on convergence un-
der different heterogeneity levels.
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Figure 11: Impact of the fairness factor ¢ on the variance
of local training progress and the final test accuracy under
different system heterogeneity levels.

We further evaluate the proposed data f-resampling strat-
egy under different degrees of label skew. By varying the
Dirichlet concentration parameter o, we control the level of
label-distribution heterogeneity, and by tuning f3, we adjust
the resampling strength and 8 = 0 corresponding to disabling
resampling. The results in Figure 12 show that without re-
sampling, the convergence accuracy degrades sharply as data
non-IIDness increases. While -resampling stabilizes conver-
gence and significantly improves final accuracy by enforcing
stronger gradient alignment across nodes. Compared with the
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no-resampling baseline, when « < 5, the final test accuracy is
improved by about 15%-39%. And Figure 13 visualizes the
pairwise cosine similarity of initial gradients between nodes
with and without resampling under the same Dirichlet setting,
and confirms that gradients become much more aligned after
applying the f-resampling mechanism.
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Figure 12: Test accuracy under varying [-resampling

strengths and degrees of data heterogeneity, with the system
heterogeneity fixed at a Gini coefficient of 0.1.
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Figure 13: Similarity matrices of the learned aggregation
topology under different hyperparameter settings of HAAF
architecture.

To analyze how different synchronization mechanisms
utilize heterogeneous resources, we measure the fraction of
wall-clock time each node spends computation under each
mechanisms. As illustrated in Figure 14, HAAF achieves
both a lower mean and a lower variance of computation-time
share across nodes. By shortening the idle waiting time of
high-capacity nodes, HAAF improves the overall resource
utilization of the system. In contrast, PS, AVL, and FAT
exhibit pronounced straggler effects, which prolong synchro-
nization cycles and reduce effective throughput.

Finally, we assess the scalability of the proposed frame-
work by varying the number of training nodes. Figure 15
presents the convergence time of PS, AVL, FAT, and HAAF
under different training scale. When the scale is small, nodes
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are not partitioned into multiple trees and all mechanisms
perform similarly. As the system scales up, increasing het-
erogeneity and IO pressure substantially slow down the
three baselines. By leveraging asynchronous-parallel updates
across trees, HAAF achieves noticeably larger convergence-
time reductions than FAT, AVL, and PS across all evaluated
scales.

1.00
@ 25%~75%

— Median Line

Computing Proportion (%)

PS AVL FAT HAAF
Synchronization Mechanism

Figure 14: Distribution of per-node computation-time share
under different synchronization mechanisms.
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Figure 15: Convergence time versus system scale under dif-
ferent synchronization mechanisms.

7 Conclusion

In this paper, we propose a heterogeneity-aware framework
for distributed training in CPNs. The framework employs
a hybrid asynchronous aggregation forest mechanism, com-
bined with a heuristic synchronization-topology optimization
algorithm and a sample resampling strategy, to alleviate the
adverse impact of system heterogeneity and data non-IIDness
on model convergence. Experimental results show that, under
various heterogeneous configurations, the proposed frame-
work achieves substantial improvements in both training effi-
ciency and convergence accuracy compared with mainstream
synchronous communication mechanisms.
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