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Abstract: Current data sharing mechanisms face limitations in fine-grained access control, encryption overhead, terminal re-
source consumption, and result verifiability. These issues make them unsuitable for the low-latency and high-security demands
of drone swarm collaboration in cloud-edge-end architectures. To address these challenges, this paper proposes a secure and
low-latency data sharing method based on blockchain and outsourced attribute-based encryption. First, in the edge layer, a
blockchain network is responsible for enforcing access control, where policy-matching smart contracts enforce fine-grained
attribute-based access control. Second, encryption and decryption tasks are outsourced to the edge and cloud, effectively re-
ducing the computational burden on terminal devices. Third, a consistency verification smart contract is introduced to validate
outsourced results, ensuring data confidentiality and integrity. Experimental results show that the proposed method signifi-
cantly lowers system latency and terminal overhead while maintaining strong security, making it suitable for edge-collaborative
applications with strict real-time requirements.
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1 Introduction
Drone swarms, as collaborative systems composed of mul-
tiple autonomous or semi-autonomous drones, are emerging
as a core technology reshaping the execution of critical
tasks. Their application domains have extended beyond tradi-
tional military reconnaissance to include public safety, preci-
sion agriculture, industrial inspection, and disaster response
[1]. These scenarios are commonly characterized by task
complexity, dynamic environments, and stringent real-time
requirements. Rather than serving merely as isolated data col-
lection platforms, drones within a swarm operate as integrated
cooperative entities, exhibiting collective intelligence through
tight coordination and real-time information exchange. The
realization of swarm intelligence and collaborative behavior
fundamentally relies on reliable and low-latency data ex-
change, both among individual drones and between the swarm
and external command nodes [2]. Therefore, the efficiency of

data sharing, especially with respect to latency, has become a
critical concern in drone swarm missions.

Furthermore, drone systems are typically deployed in
open and complex environments, which expose them to a
diverse range of security threats. During transmission, data
is highly vulnerable to eavesdropping, tampering, replay at-
tacks, and unauthorized access. These threats can lead to the
disclosure of sensitive mission-related information, such as
reconnaissance objectives or navigation routes, and may com-
promise the integrity of mission execution. In more severe
cases, adversaries may inject falsified data to gain unautho-
rized control over the swarm. Therefore, guaranteeing the
confidentiality, integrity, and authenticity of shared data is
a fundamental prerequisite for enabling drone swarms to
operate reliably in mission-critical scenarios.

In response to the aforementioned threat landscape,
the security architecture of drone systems must not only
prevent external adversaries from eavesdropping on or ma-
nipulating communication channels, but also defend against
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potential threats posed by internal untrusted entities, such
as compromised drones or malicious cloud servers, which
may attempt to tamper with or fabricate mission-critical
data. Under this adversarial model, conventional encryption
mechanisms that focus solely on channel protection, such as
Transport Layer Security (TLS) or Internet Protocol Security
(IPSec) [3, 4], are insufficient to ensure end-to-end secu-
rity across the entire data lifecycle. This limitation becomes
particularly pronounced in environments characterized by
resource-constrained nodes, unstable communication links,
and stringent real-time mission requirements.

Recent research has explored the integration of au-
thentication mechanisms, symmetric encryption, and identity
management protocols to establish secure communication
frameworks for drone networks [5]. However, these methods
often struggle to balance lightweight design, low latency, and
strong security guarantees when applied to scenarios charac-
terized by highly dynamic network topologies, heterogeneous
node collaboration, and resource-constrained environments.
Such limitations hinder their practical feasibility and scal-
ability in real-world deployments. Consequently, there is
an urgent need for a lightweight security mechanism that
operates effectively in untrusted network environments, sup-
ports fine-grained access control, and resists active attacks,
in order to ensure both communication security and mission
availability for drone swarms in critical applications.

Blockchain technology has attracted considerable at-
tention for its decentralized architecture, tamper resistance,
and traceability, particularly in ensuring identity trustwor-
thiness and data integrity [6, 7]. However, existing studies
primarily focus on scenarios involving static identity man-
agement or data provenance, while lacking systematic solu-
tions for efficient and secure data sharing under conditions
of resource constraints and dynamic network topologies.
To address this gap, this paper proposes a low-latency and
secure data sharing scheme based on blockchain and out-
sourced attribute-based encryption, aimed at enhancing both
the efficiency and security of data exchange in edge environ-
ments. First, access control is delegated to the edge network,
where fine-grained, attribute-based authorization is enforced
through smart contracts. Second, an outsourced attribute-
based encryption scheme is employed to offload encryption
and decryption tasks to edge and cloud layers. The correct-
ness of the outsourced results is then verified via a consistency
validation contract, thereby enabling secure and efficient data
sharing. The main contributions of this paper are as follows:
1) A low-latency and secure data sharing scheme tailored

for drone-based cloud-edge-end collaborative scenarios is
proposed.By integrating blockchain technology with out-
sourced attribute-based encryption, the scheme effectively
addresses several limitations of traditional data sharing
mechanisms, including coarse-grained access control, ex-
cessive computational burden on terminal devices, and
insufficient security verification.

2) A policy-driven smart contract mechanism is designed
to delegate access control authority to the edge-
side blockchain network. This facilitates fine-grained,
attribute-based access control, enhances the flexibility
and scalability of access policy enforcement, and reduces
dependence on centralized cloud-based management.

3) A consistency verification smart contract mechanism is
developed to validate the correctness of outsourced en-
cryption results executed at the edge or cloud layer. This
design strengthens the trustworthiness and integrity of the
data processing pipeline. Experimental evaluations con-
firm the effectiveness of the proposed method in reducing
system latency and terminal resource consumption.

The remainder of this paper is organized as follows.
Related work is reviewed in Section 2. In Section 3, we in-
troduce the problem formulation. Specifically, it contains the
system model, threat model, and design goals. Section 4 de-
tails the related methods and technologies. Section 5 provides
the security analysis of the proposed method and theoretically
demonstrates its effectiveness. The experimental analyses are
provided in Section 6. Section 7 concludes this paper.

2 Related Work
In drone-enabled cloud–edge–end collaborative environ-
ments, the inherent characteristics of dynamic network
topologies, limited device resources, and untrusted commu-
nication channels impose stringent demands on both the
security and efficiency of data sharing. To address these
challenges, existing research has primarily focused on en-
suring secure data exchange through the implementation of
access control mechanisms and the design of cryptographic
algorithms.

2.1 Access Control Mechanisms in Drone
Swarms

Implementing secure access control in drone swarms is criti-
cal to ensuring system reliability. The predominant models in
current practice include Role-Based Access Control (RBAC)
[8] and Attribute-Based Access Control (ABAC) [9]. RBAC
assigns permissions based on predefined roles, offering sim-
plicity in management but limited granularity. In contrast,
ABAC makes dynamic access decisions based on entity at-
tributes and policy rules, enabling fine-grained and flexible
control at the cost of increased policy evaluation complex-
ity. Jeong et al. [10] designed a multi-operator drone control
system using the RBAC model, the administrator role is
granted full system privileges, the pilot role is limited to flight
control and status monitoring, and the camera operator role
is restricted to controlling the gimbal and accessing video
data. This role-based separation effectively prevents opera-
tional conflicts among multiple operators and enhances the
efficiency and precision of task execution.

However, traditional RBAC models exhibit limited
adaptability in dynamic environments, as they are unable to
adjust permissions in response to real-time contextual con-
ditions such as time, location, or device status. To address
this limitation, Pang et al. [11] proposed a Location and
Environment-Aware Attribute-Based Access Control (LE-
ABAC) policy for securing drone flight control systems. This
method combines internal drone attributes with external con-
textual information, such as geographic location and environ-
mental conditions, to define fine-grained access rules, thereby
enabling precise control over internal data interactions and
mitigating risks such as malicious code injection and data
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tampering in PX4-based flight controllers. Nonetheless, this
work relies on a centralized Policy Decision Point (PDP) and
attribute management service. If the central node is compro-
mised, attackers may forge attributes or manipulate policies
to bypass access control mechanisms. Therefore, although
conventional RBAC and ABAC models improve the manage-
ability and flexibility of access control in drone collaboration
scenarios to a certain extent, their limited granularity and
reliance on centralized infrastructure pose significant chal-
lenges. These limitations hinder their ability to fully support
the distributed and autonomous coordination requirements of
secure drone swarm operations.

2.2 Secure Data Sharing in Drone
Cloud–Edge–End Collaboration

In the process of data sharing within drone-enabled
cloud–edge–end collaborative systems, instructions and data
are often transmitted over open communication channels,
making them susceptible to malicious interception or forgery.
During data exchange, edge collaboration nodes and cloud
service nodes may also pose threats to the confidentiality
and consistency of shared data. Attribute-Based Encryption
(ABE) has emerged as a promising cryptographic method
that enables fine-grained access control by specifying decryp-
tion policies based on user attributes [12, 13]. This level of
granularity enhances the security of data sharing, particularly
in the highly dynamic environments in which drones oper-
ate. However, conventional access control schemes typically
impose significant computational overhead, rendering them
unsuitable for resource-constrained terminal devices.

To mitigate this issue, encryption and decryption tasks
can be partially outsourced to ground stations or edge com-
puting nodes [14, 15]. For instance, Zhou et al. [16] proposed
a blockchain-based secure and efficient data sharing model
that leverages the immutability of blockchain and smart con-
tracts to support identity authentication and access control,
while outsourcing cryptographic operations to accelerate en-
cryption and decryption. Nevertheless, the model does not
address the verifiability the outsourced encryption process.
To overcome these challenges, Ge et al. [14] proposed the
verifiable and fair attribute-based proxy re-encryption (VF-
ABPRE) scheme, a ciphertext-policy attribute-based proxy
re-encryption mechanism that ensures verifiability and fair-
ness. This work employs commitment techniques to allow
recipients to verify the correctness of re-encryption, while
preventing honest cloud servers from being falsely accused.
Similarly, Sun et al. [15] introduced VF-PPBA, a verifiable
and fair proxy broadcast re-encryption scheme supporting
attribute-based data sharing among multiple recipients. By
preserving structure and incorporating commitment mecha-
nisms, the scheme enables users to verify the correctness
of re-encrypted ciphertexts. However, both approaches suffer
from high verification complexity and lack automated execu-
tion mechanisms, making it difficult to support efficient and
scalable data validation workflows.

To address the challenges posed by the dynamic topol-
ogy of drone networks, recent studies [17–19] have explored
the use of blockchain technology and its embedded smart con-
tracts to automate the enforcement of access control policies.

These approaches enable decentralized access management
and allow systems to adapt to rapid changes in network
topology. By leveraging smart contracts, access rights can
be granted or revoked automatically based on predefined
conditions, thereby reducing dependence on centralized man-
agement entities and enabling real-time responsiveness to
network state variations.In drone network scenarios, Feng et
al. [19] developed a blockchain-based framework that lever-
ages smart contracts and outsourced parallel computation
to enable privacy-preserving data sharing without a trusted
third party. Bera et al. [20] investigated the applicability and
challenges of blockchain in 5G-enabled Internet of Things
(IoT) environments and introduced a novel secure framework
named BSD2C-IoD. This framework is designed to safe-
guard data exchanged among drone communication entities
and to secure communication between drones and ground
control. The study further proposes a consensus-based algo-
rithm to facilitate lightweight verification and block addition.
Mandal et al. [21] proposed CSUAC-IoT, a certificateless
signcryption scheme with three-factor authentication for IoT
systems. By integrating cryptographic techniques with bio-
metric verification and mobile devices, the scheme ensures
secure communication between IoT devices and users, and
supports user authorization, authentication, and revocation.
These studies collectively enhance the security and efficiency
of complex network environments composed of drones, IoT
devices, and edge computing nodes, demonstrating the pivotal
role of blockchain in achieving these goals. Accordingly, the
integration of smart contracts and attribute-based encryption
enables fine-grained and secure data sharing without reliance
on trusted third parties.

In summary, existing studies addressing data sharing
security in drone-enabled cloud–edge–end collaborative sce-
narios face the following challenges: (1) The traditional ac-
cess control mechanisms are prone to single points of failure
or trust issues. (2) Current approaches often rely on com-
putationally intensive encryption operations performed on
terminal devices, resulting in low efficiency and high resource
consumption. (3) There is a lack of verifiability mechanisms
to ensure the correctness and trustworthiness of encryption
results. To address these challenges, this paper proposes a
blockchain-based smart contract for fine-grained access con-
trol, which ensures the immutability and transparency of
access policies and enables precise data authorization and
protection. Furthermore, an outsourced attribute-based en-
cryption scheme is adopted to offload complex cryptographic
operations to edge or cloud servers. A consistency verification
mechanism, implemented via smart contracts, is introduced
to validate outsourced results, thereby reducing the com-
putational burden on drone terminals while ensuring the
trustworthiness and integrity of shared data.

3 Problem Formulation
Under the cloud–edge–end collaborative architecture, tradi-
tional data sharing mechanisms struggle to meet the demands
for efficient and secure data exchange due to centralized bot-
tlenecks, poor adaptability to dynamic environments, and un-
trusted communication channels. These limitations are partic-
ularly pronounced in resource-constrained terminal scenarios
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such as drones. To address these challenges, this paper pro-
poses a low-latency and secure data sharing method based on
blockchain and outsourced attribute-based encryption, which
significantly enhances both the efficiency and security of data
sharing in edge environments. This section presents the sys-
tem model and threat model of the proposed method, and
gives its corresponding security objectives.

3.1 System Model

The security assumptions of this paper consider the command
center as a trusted authority within the system, equipped with
comprehensive security protection mechanisms and access
control policies. It is responsible for centralized scheduling,
task issuance, and key management. Ground control sta-
tions (GCSs) are modeled as enhanced-trust, auditable edge
nodes equipped with secure hardware execution and reliable
communication links. They handle ciphertext transformation
and policy evaluation without retaining long-term decryption
keys, preventing them from becoming single points of fail-
ure even under partial compromise. In contrast, the cloud
server is considered untrusted, as it may be subject to ex-
ternal attacks or internal unauthorized access, posing risks
such as data leakage, tampering, or denial-of-service attacks.
Similarly, drones are treated as untrusted terminals, given
their deployment in open and complex environments where
they are vulnerable to eavesdropping, tampering, replay at-
tacks, and unauthorized access. As a result, their operations
cannot be fully trusted. Therefore, throughout the processes
of data collection, transmission, and processing, it is essen-
tial to design a lightweight security mechanism that supports
end-side encryption and fine-grained access control while
providing resilience against tampering by untrusted cloud
servers. Ensuring the confidentiality, integrity, and availabil-
ity of system-wide data under these conditions necessitates a
rigorously designed and verifiable security framework.

The blockchain-based secure data sharing method for
drone collaboration proposed in this paper is illustrated in the
system model shown in Figure 1. The model involves five key
entities: drones, ground control stations (GCS), blockchain
network, cloud service (CS), and the command center. Drones
are responsible for receiving commands, executing cooper-
ative tasks, and collecting mission-related data, which are
subsequently uploaded to the GCS. As edge computing nodes,
the GCSs not only manage drone scheduling but also perform
preliminary data processing and forwarding. CS provides
auxiliary storage and computational capabilities. However,
due to its uncontrolled operating environment, it is considered
untrusted.

The blockchain functions as a distributed ledger system
jointly maintained by multiple GCS nodes. Embedded smart
contracts are employed to perform essential operations such
as task validation and data access auditing. The command
center, acting as a trusted authority, oversees identity registra-
tion, key distribution, and command dissemination for both
drones and GCSs, thereby establishing a controllable root of
trust at the system initialization phase.

Nevertheless, existing data sharing mechanisms exhibit
notable limitations in terms of access control granularity,

cryptographic computation overhead, terminal resource con-
sumption, and result verifiability. These shortcomings make
them inadequate for meeting the combined requirements of
low latency and high security in drone swarm collaboration
within cloud–edge–end architectures. To address these chal-
lenges, this paper proposes a low-latency and secure data
sharing scheme that integrates blockchain with outsourced
attribute-based encryption. By distributing access control en-
forcement and encryption verification tasks across edge and
cloud layers, the proposed method significantly reduces the
computational burden on terminal devices. The integration
of this system model and methodology not only improves
data sharing efficiency in edge-collaborative environments,
but also reduces system latency and terminal energy con-
sumption while preserving security, thereby offering strong
potential for real-world deployment and broader application.

Figure 1: The model of data sharing scheme blockchain-
based and attribute outsourcing encryption.

3.2 Threat Model

Due to the inherent characteristics of drone swarm networks
and their communication channels, the security vulnerabili-
ties and risks of privacy infringement may arise. The proposed
scheme in this paper adopts the widely used Dolev–Yao (DY)
threat model [22], which assumes that an adversary is ca-
pable of intercepting, modifying, and fabricating messages
transmitted over insecure channels. Accordingly, the specific
capabilities of the adversary in this model are defined as
follows:
(1) During communication, a malicious drone may eaves-
drop on transmitted messages and further manipulate the
communication channel by modifying or injecting falsified
messages.
(2) A malicious drone may collude with other drones to re-
peatedly request messages from the ground station, thereby
disrupting the normal operation of the server through a denial-
of-service attack.
(3) Drones and cloud servers may forge data or perform incor-
rect encryption and decryption operations. A drone may also
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generate falsified decryption proofs in order to deny respon-
sibility and shift blame to the cloud server for erroneous data
storage.

3.3 Security Objectives

The primary objective of designing a data sharing scheme
is to ensure data security and privacy while maintaining its
availability. The data sharing scheme proposed in this paper
is designed to achieve the following three security goals:
(1) Data Confidentiality

Data must be encrypted during both transmission and
storage to prevent unauthorized access. In the data sharing
process, open communication channels and insecure net-
works can lead to the leakage of sensitive information. To
preserve data confidentiality, all data transmitted and stored
must undergo encryption. Encryption ensures that even if data
is intercepted during transmission or accessed illegally from
storage devices, the content remains protected and cannot be
easily deciphered.
(2) Data Integrity

Data integrity refers to the assurance that data has not
been tampered with during storage or transmission. In gen-
eral, hash functions can be employed to generate a unique
hash value for the data. The sender computes the hash be-
fore transmission and sends it along with the data. Upon
receipt, the receiver recomputes the hash and compares it with
the original; if the two values match, the data is considered
unaltered. Additionally, digital signatures offer a means of
verifying both data integrity and authenticity. They not only
detect unauthorized modifications but also confirm the origin
of the data. However, since the proposed scheme involves out-
sourced attribute-based encryption, it requires not only verifi-
cation of data integrity and consistency, but also validation of
the correctness of outsourced encryption operations.
(3) Access Control

Strict access control mechanisms must be enforced
throughout the data sharing process to ensure that only users
with appropriate permissions are allowed to access or modify
the data. Access control is a fundamental component of any
data sharing scheme, serving to enforce permission bound-
aries and protect sensitive information. An effective access
control strategy typically consists of two key steps: authenti-
cation and authorization. Authentication verifies the identity
of the user, and once verified, authorization determines which
specific resources the user is permitted to access.

4 Method
To enable secure end-to-end data sharing, this paper pro-
poses a low-latency and secure data sharing scheme based
on blockchain and outsourced attribute-based encryption. The
proposed scheme first leverages blockchain technology to
delegate access control permissions and policy matching to
the edge layer, where dynamic and automated access con-
trol is enforced via smart contracts. Second, by employing
an outsourced attribute-based encryption algorithm, compu-
tationally intensive encryption tasks are offloaded to edge and
cloud layers, thereby significantly reducing the computational

burden on terminal devices. Finally, the consistency and se-
curity of the entire data sharing process are verified through
smart contracts, ensuring both the efficiency and reliability of
data exchange.

This section provides a detailed description of the pro-
posed data sharing method. The overall system workflow is
illustrated in Figure 2. The symbols and their corresponding
meanings used in this paper are summarized in Table 1. The
protocol is designed as follows:

Setup(λ ,U)→ (pp,msk): The system setup algorithm
executed by the command center takes as input the secu-
rity parameter λ and the attribute universe U , and outputs
the public parameters, including the public parameters for
message-locked encryption pp, and the master secret key
msk.

AES.Enc(pp,m,K)→ Cm: This process is a symmetric
encryption procedure executed on the drone and the GCS.
It takes as input the system public key pp, the message
m, the symmetric key K, and outputs the ciphertext Cm.The
symmetric key K = H1 (RD1⊕RG1) is generated based on
Physical Unclonable Function (PUF) technology [23]. Note
that PUFs are not mandatory for the correctness of the proto-
col. They serve as an optional hardware-based enhancement
for binding symmetric keys to device-specific physical char-
acteristics, providing resistance against key extraction attacks.
If a deployment does not support PUF hardware, conventional
key-agreement mechanisms can be adopted without affecting
the remaining components of the scheme.

AES.Dec(pp,Cm,K)→ m: This process is a symmetric
decryption procedure executed on the drone and the ground
control station (GCS). It takes as input the system public key
pp, the ciphertext Cm, and the symmetric key K, and outputs
the message m.

MLE.Enc(pp,m,σ)→
{

R,r,CMLE ,Ctag
}

: This process
is the Message-Locked Encryption (MLE) encryption proce-
dure. It takes as input the system public key pp, the message
m, the MLE encryption key σ , outputs the message authen-
tication code R, the hash r of the combined message and
code, and the locked ciphertext CMLE , Ctag. The ciphertext tag
Ctag ensures non-duplicate data storage on the cloud server
without requiring decryption.

KeyGen(msk,S) → SK: This process is also executed
by the command center. It takes as input the master secret
key msk and the attribute set S, and outputs the private key
SK = (z,T K).

ABE.Enc(pp,(A,ρ) ,CMLE ,σ ,r)→CT : This process is
an encryption procedure. It takes as input the system pub-
lic key pp and the access control policy (A,ρ), treats the
MLE encryption key σ as part of the secret in the linear se-
cret sharing scheme, and combines it with the MLE ciphertext
and encryption parameters. The final output is the complete
ciphertext CT .

ABE.UserEnc(pp,(A,ρ) ,CMLE ,σ ,r)→ Cuser: This al-
gorithm is executed by the GCS. It performs partial encryp-
tion computation and takes as input the system public key pp,
the access control policy (A,ρ), the MLE ciphertext, and the
MLE encryption parameters. It outputs the partial ciphertext
Cuser.
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Figure 2: The flowchart of data sharing scheme
blockchain-based and attribute outsourcing encryption,
showing how drone, ground stations, the cloud, and the
blockchain interact across data encryption, outsourced
computation, access control, and final decryption. The
figure highlights how computation is distributed among
entities and how smart contracts enforce authorization and
verify correctness.

Table 1: Notation table

Notation Description
λ Security parameters
U,S Universal attribute set, Attribute subset
pp,msk Public parameters, Master secret key
(e,G,GT ,G, p) Bilinear mapping pair
f1, . . . , fU Attribute function
α,a,φ ,ϕ,Q Random number
H1,H2 Hash function
DID,GID Unique real identity of drone and ground station
K Symmetric key
T S,∆T,TC Timestamp, Time interval, Current system time
m1,m Original message, Processed message
Cm Ciphertext
σ ,R,r MLE encryption parameters
C MLE Ciphertext for locked encryption output
C tag Ciphertext tag
SK,{z,T K} Private key, Private key components
A Access control policy
(A,ρ) Data access control structure
CT Attribute-encrypted ciphertext
Cuser User-side encrypted ciphertext
Cout Cloud-side encrypted ciphertext
Dout Partially decrypted ciphertext
C′ Fully decrypted ciphertext
π Message decryption proof
ACC SC Policy matching contract
V ER SC Consistency verification contract

ABE.OutEnc(pp,(A,ρ))→Cout : This algorithm is exe-
cuted on the cloud server. It takes as input the system public
key pp, the message m, and the access control policy (A,ρ),
and outputs a partially encrypted ciphertext Cout .

ABE.Dec(pp,(A,ρ) ,SK,CT )→ C′ consists of the fol-
lowing two partial decryption algorithms:

ABE.OutDec(pp,(A,ρ) ,T K,CT ) → Dout : This algo-
rithm is executed on the GCS and performs partial decryption.
It takes as input the private key T K =

(
K,L,{Kx}x∈S

)
and

the ciphertext CT , as defined in Equation 1, and outputs a
partially decrypted ciphertext Dout .

CT = ((A,ρ) ,CMLE ,Ctag,C1,
{

C2, j,C3, j,C4, j
}

j∈[1,l]) (1)

ABE.UserDec(pp,z,Dout)→C′: This is the decryption
algorithm executed on the drone terminal, which runs after
partial decryption. It takes as input the system public key
pp, the private key z, and the partially decrypted ciphertext
Dout from the cloud server, and outputs the fully decrypted
ciphertext C′.

MLE.Dec(pp,R,CMLE ,C′) → {m′,π}: This process is
the MLE decryption procedure. It takes as input the system
public key pp, the locked ciphertext C, the message authen-
tication code R, and the fully decrypted ciphertext C′MLE ,
and outputs the recovered plaintext m′ from message-locked
decryption and the corresponding decryption proof π .

Finally, two smart contracts are deployed on the
blockchain. The first is the policy matching contract, de-
noted as ACC SC, which verifies whether V (S,(A,ρ)) = 1
holds; if so, access permission is granted. The second is the
consistency verification contract, denoted as V ERSC, which
checks whether the condition Ctag = φ ⊕ϕ⊕H2(m′)⊕H2(R)
is satisfied; if the condition holds, consistency verification is
considered successful.

4.1 System Initialization Phase

The Setup(λ ,U) → (pp,msk) algorithm, executed by the
command center, takes as input the security parameter λ and
the universal attribute set U , and returns the public parame-
ters pp, including the public parameters for message-locked
encryption and the master secret key msk. The command
center generates a bilinear map tuple (e,G,GT ,G, p), and ran-
domly selects values (α,a ∈ Z∗p,g, f1, . . . , fU ,φ ,ϕ,Q ∈ G),
along with two hash functions H1 and H2. The master secret
key is defined as msk = gα , and the public parameters pp are
constructed accordingly.

Each drone and ground control station is equipped with
a PUF chip and assigned a unique identity, denoted as DID
and GID, respectively. After pre-registration, the registration
algorithm executed by the command center takes as input the
master secret key msk and the user’s attribute subset S, and
outputs the private key SK = {z,T K}.

pp = (e,G,GT ,g, f1, . . . , fU ,φ ,ϕ,ga,e(g,g)α) (2)

The drone Dr1 first performs mutual authentication and
key agreement with the GCS1, resulting in the establishment
of a symmetric key K and a secure communication channel.
Afterward, Dr1 encrypts the collected data using symmetric
encryption and transmits it to GCS1.
(1) According to the blockchain and PUF-based mutual au-
thentication protocol proposed in [23], the validity of the
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counterparty’s identity can be verified. If the authentication is
successful, both parties generate a session key K1.
(2) The drone Dr1 encrypts the current system time T S
through AES.Enc(K1,DID∥TC) to request authentication
from the GCS. The ground station first checks whether the
current time TC satisfies the condition TC−T S < ∆T . If the
condition holds, the session key is considered valid and has
not expired; otherwise, re-authentication is required.
(3) The drone uses the symmetric key K1 to encrypt the col-
lected data m1 through symmetric encryption, resulting in the
ciphertext Cm1 . The process is described in Equation 3.

Cm1 = AES.Enc(pp,(DID1||m1) ,K1) (3)

4.2 Data Encryption and Upload Phase

In this phase, after decrypting the data, the GCS1 processes
and organizes the data, defines the data access control struc-
ture, and performs partial encryption. The partially encrypted
data is then outsourced to the cloud server for final encryption
and storage. The sequence diagram is shown in Figure 3.

Figure 3: The sequence diagram of the encryption request
phase of the data sharing scheme, where the drone trans-
mits encrypted data to the ground station, and the ground
station performs MLE locking and partial ABE encryp-
tion. The cloud completes the outsourced encryption, and
the blockchain stores metadata necessary for subsequent
access-control verification.

(1) GCS1 decrypts the data using the key K1 through
AES.Dec(pp,Cm1,K1). If the resulting data has the prefix
DID1, the original data m1 is successfully recovered. The data
is then processed and reorganized to form a new data item m,
to which a new tag mtag is assigned.
(2) First, the data m is encrypted using the message-locked
encryption function MLE.Enc(pp,σ ,m), which takes as in-
put the system public key pp, the data m, and the MLE
encryption key σ , and outputs the message authentication
code R, the hash r of the combined message and code,
and the locked ciphertext and tag CMLE and Ctag. A ran-
dom value R ∈ {0,1}k and a random σ ∈ Zp are selected.
The message-locked encryption computes r = H2(m∥R) and
C = (m∥R)⊕H1 (e(g,g)αrt), while the ciphertext tag is de-
fined as Ctag = φ ⊕ϕ⊕H2(m′)⊕H2(R). The ground control
station stores {mtag,Ctag,R,(A,ρ)} on the blockchain.
(3) The GCS sets an access structure (A,ρ), where
(A,ρ) is an l × n matrix and ρ is a mapping that as-
sociates each row of A with an attribute in the univer-
sal set U . The partial attribute-based encryption function

ABE.UserEnc(pp,(A,ρ),CMLE ,r,C) is then invoked to per-
form partial encryption, resulting in the output of a partial
ciphertext Cuser. Based on the parameters of the MLE encryp-
tion, a random vector µ⃗ =(σ ,y2, . . . ,yn)∈ Zn

p,rt is set to serve
as the secret in a linear secret sharing scheme, and y2, . . . ,yn
are randomly chosen from Zp. For each row A j in A, the
set λ =

{
λ j = µ⃗ ·A j, j ∈ [1, l]

}
is computed. The resulting

partial ciphertext is constructed as Cuser =
{

C1 = grt ,C2, j =

CMLE ,gaλ j , j ∈ [1, l]
}

.
(4) Upon receiving the partially encrypted data, the
cloud server executes the outsourced encryption algorithm
ABE.OutEnc(pp,(A,ρ)). This algorithm takes as input the
system public key pp and the access control policy (A,ρ),
and outputs a partially encrypted ciphertext Cout.

Random values r j ∈ Zp, j ∈ [1, l] are selected, and the
resulting ciphertext Cout is constructed as shown in Equation
4. By combining the MLE ciphertext with the partially en-
crypted ciphertext, the cloud server generates and stores the
complete ciphertext CT , as defined in Equation 5.

Cout =
(

C3, j = f
−r j
ρ( j), C4, j = gr j ,∀ j ∈ [1, l]

)
(4)

CT = ((A,ρ),Ctag,Cuser ,Cout )

=
(
(A,ρ),CMLE ,Ctag,C1,

{
C2, j,C3, j,C4, j

}
j∈[1,l]

) (5)

4.3 Data Request and Decryption Phase

In this phase, the drone Dr2 sends a data request to the
GCS2, which then forwards the request to the cloud server.
The cloud server invokes the access control smart contract on
the blockchain to verify whether the attributes of Dr2 satisfy
the specified access structure. If the verification succeeds, the
cloud server performs partial decryption and sends the par-
tially decrypted data to GCS2. The sequence diagram of this
process is shown in Figure 4.
(1) The drone Dr2 sends a request message Request ={

DID2,SD2,mtag,T KD2
}

to the GCS2, where DID2 de-
notes the identity of the requesting drone, SD2 represents
its attribute set, and mtag is the tag of the requested
data. The GCS invokes the blockchain-based access control
smart contract ACC SC which verifies whether the condition
V (SD2,(A,ρ)) = 1 holds. If the verification is successful, the
contract returns {V,Ctag} to the cloud server and {V,Ctag,R}
to GCS2, where V indicates that access has been granted.
(2) Upon receiving the broadcast message indicating the
completion of the smart contract execution, the cloud
server sends the corresponding ciphertext tag Ctag along
with the ciphertext CT . The GCS then executes the algo-
rithm ABE.OutDec(pp,(A,ρ),T KD2,CT ), where the input
includes the private key T KD2 =

(
K,L,{Kx}x∈S

)
and the

ciphertext CT = ((A,ρ),Ctag,Cuser,Cout). The output is the
partially decrypted ciphertext Dout , and this decryption algo-
rithm is executed on the cloud server, as defined in Equation
6. Let J = { j : ρ( j) ∈ S} ⊂ {1, . . . l} exist an element θ j ∈ Z∗p
such that ∑ j∈J θ j ·A j = (1,0, . . . ,0).
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Dout = e(g,g)rσα/z

=
e(K,C1)

e
(

∏ j∈J C
θ j
2, j ·C

θ j
3. j,L

)
·∏ j∈J e

(
C

θ j
4, j,Kρ( j)

) (6)

(3) After receiving the partially decrypted ciphertext from the
cloud server, the drone Dr2 invokes the ABE.UserDec func-
tion. It takes as input the system public key pp, the private key
zD2, and the partially decrypted ciphertext Dout, and performs
the computation as defined in Equation 7.

C′ = H1 (Dout
zD2) = H1 (e(g,g)αrσ ) (7)

(4) The drone then performs message-locked decryption us-
ing MLE.Dec(pp,R,CMLE ,C′). The input parameters include
the system public key pp, the message m, and the access con-
trol policy (A,ρ). The outputs are the recovered plaintext m′

from message-locked decryption and the corresponding proof
π . The decryption is computed as m′∥R =C⊕C′ = (m′∥R)⊕
H1 (e(g,g)αrσ )⊕H1 (e(g,g)αrσ ). By retrieving R from the
blockchain, the drone obtains m′, and subsequently computes
the proof π = {H2 (m′) ,H2(R)}.
(5) The drone Dr2 sends the message proof π to the
blockchain. The smart contract V ER SC on the blockchain
verifies whether the condition Ctag = φ⊕ϕ⊕H2(m′)⊕H2(R)
holds. If the verification succeeds, the contract outputs True;
otherwise, it outputs False and triggers a penalty mechanism
to punish the cloud server responsible for the outsourced
encryption.

Figure 4: The sequence diagram of the decryption request
phase in data sharing scheme, including access-policy ver-
ification through the blockchain and outsourced partial
decryption performed by the cloud and ground station. The
drone completes the final decryption and submits a proof
to the blockchain for ciphertext-consistency verification.

4.4 Design of Smart Contracts

The design concept of the ACCSC contract is to implement
an attribute-based access control mechanism, while introduc-
ing a punishment mechanism to restrict access from malicious
users. The ACCSC contract initializes the number of users
(userNum) and number of attributes (ArrNum), and maintains

a punish mapping that records the punishment status of each
user.

The ArrPolicyVerify function is used to verify user ac-
cess requests, and its pseudocode is shown in Algorithm
1. The function receives the user attribute matrix ArrUser,
the cloud attribute matrix PolCloud, as well as the user ID
(userId) and address (userAdd) as parameters. First, the func-
tion records the user ID into the punish mapping and checks
whether the user is in a punishment state. If the user is pun-
ished, the function returns a string indicating that the user has
been punished. Otherwise, it calculates the access result based
on the attribute matrices. If the calculation result is 0, it means
that the user has the correct access permission, and the func-
tion returns a string indicating authorized access. Otherwise,
it returns a string indicating that the user’s access is denied.

The Punishment function is used to determine whether
the user needs to be punished, and its pseudocode is shown
in Algorithm 2. The function takes the user’s address (user-
Add) as a parameter. First, it records the current time as
nowTime and checks whether the user’s error time exceeds
one minute. If it exceeds one minute, it means that the pun-
ishment period has ended; the function resets the error count
to 1 and returns false, indicating that the user does not need
to be punished. If it does not exceed one minute, the function
checks whether the user’s error count exceeds three times.

Algorithm 1 Policy matching function (ACC SC.ArrPolicyVerify)
Input: uint[][] ArrUser, uint[] PolCloud, uint userId, address userAdd
Output: string Access

1: function ARRPOLICYVERIFY(ArrUser, PolCloud, userId, userAdd)
2: punish[userAdd].clo← userId
3: if punish[userAdd].falseTime̸=0
4: ∧PUNISHMENT(userAdd) then
5: Access← ’punish’
6: else
7: result← 0
8: for i← 0 to resourceNum−1 do
9: result+= PolCloud[userId]×ArrUser[i][userId]

10: end for
11: if result=0 then
12: Access← ’right’
13: else
14: punish[userAdd].falseTime← block.timestamp
15: Access← ’wrong’
16: end if
17: end if
18: return Access
19: end function

Algorithm 2 Punishment Function (ACC SC.Punishment)
Input: address userAdd
Output: bool isPenalty
1: function PUNISHMENT(userAdd)
2: if nowTime−punish[userAdd].falseTime > 1 minutes then
3: punish[userAdd].falseTime← nowTime
4: punish[userAdd].falseNum← 1
5: isPenalty← false
6: else
7: if punish[userAdd].falseNum > 3 then
8: isPenalty← true
9: else

10: punish[userAdd].falseNum← punish[userAdd].falseNum+1
11: isPenalty← false
12: end if
13: end if
14: return isPenalty
15: end function
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If it does, it means the user should be punished, and the func-
tion returns true. Otherwise, the function increments the error
count and returns false, indicating that the user does not need
to be punished.

5 Security Analysis
The attribute-based outsourced encryption and decryption
protocol designed in this paper does not modify the un-
derlying algorithm of attribute-based encryption. Based on
outsourced decryption, the MLE algorithm is integrated into
the attribute encryption process, assigning part of the encryp-
tion tasks to a trusted ground station while delegating the
computation tasks unrelated to the secret values in attribute
encryption to the cloud server. Therefore, to verify that the
cloud server cannot obtain any information about the plain-
text m in this system, a formal security proof is provided for
the outsourced encryption and decryption part of the proto-
col. According to the security objectives of this paper, the
proposed method is analyzed from the following three as-
pects to evaluate its security in the drone cloud–edge–end
collaborative data sharing scenario:
(1) Data Confidentiality

In end-to-end data sharing, data confidentiality must
be ensured to prevent sensitive information from being ac-
cessed by unauthorized third parties. In this scheme, the
attribute-based outsourced encryption algorithm ensures that
data remains encrypted throughout the sharing process. Be-
fore encryption, the attribute-based encryption algorithm as-
signs a series of attributes to the data, and only users who
meet these attributes can decrypt it. Therefore, the attribute-
based encryption approach guarantees that even if the data
is intercepted during transmission, unauthorized users with-
out the correct attributes cannot decrypt it, thereby effectively
protecting the confidentiality of the data.

MLE.Enc(pp,m,σ)→{R,r,CMLE ,Ctag} is the MLE en-
cryption process. The security of this algorithm depends on
the security of the encryption key σ and the encryption algo-
rithm itself. Since σ is randomly generated and unpredictable,
CMLE and Ctag do not reveal any information about m. In the
outsourced encryption process, ABE.OutEnc(pp,(A,ρ))→
Cout , the cloud server does not directly access the message
m or any information that could identify m. This function
only receives the public parameters pp and the access control
policy (A,ρ), and performs partial encryption computations,
which themselves do not leak any information about m.

ABE.UserDec(pp,z,Dout)→C′ is the terminal decryp-
tion process. The terminal possesses the private key z and
the partially decrypted ciphertext Dout from the cloud server.
These pieces of information are sufficient to complete the
decryption process and recover the ciphertext C′. However,
none of this information is included in the partial encryption
or decryption performed on the cloud server, meaning that
the cloud server cannot access these private keys or the fully
decrypted ciphertext.

MLE.Dec(pp,R,CMLE ,C′) → {m′,π} is the MLE de-
cryption process. Only users with the complete decryption
information C′ can perform this process to recover the origi-
nal message m′. Since the cloud server does not have access

to the ciphertext C′MLE and the private key z, it cannot recover
the plaintext m.

All sensitive information (such as m, the private key z,
and the complete ciphertext C′ ) remains confidential through-
out the encryption and decryption processes and is neither
stored nor transmitted on the cloud server.
(2) Data Integrity

To ensure data integrity during transmission, this paper
uses a consistency verification smart contract for valida-
tion. The contract V ER SC verifies whether Ctag = φ ⊕ϕ ⊕
H2(m′)⊕ H2(R) holds, in order to determine whether the
data has been correctly decrypted. The smart contract runs
on the blockchain and does not store or transmit the actual
message m, thereby preventing any leakage of plaintext in-
formation. Once the encrypted data is sent, the receiver can
use the smart contract to verify whether the received data has
been tampered with. The immutability of the blockchain en-
sures that once the data and its verification information are
recorded, they cannot be modified or forged later. This mech-
anism guarantees that data remains in its original state during
transmission between nodes. The correctness of outsourced
encryption is verified through the consistency verification
smart contract, which executes automatically without human
intervention, ensuring the transparency of the verification
process.

In practical deployments, edge nodes such as GCSs may
be partially compromised. A malicious GCS could leak in-
termediate ciphertexts {Cuser,CMLE}, forge resource requests,
or tamper with policy evaluation. However, it still cannot
recover the plaintext m, as the ABE user key z is stored ex-
clusively on UAVs and the verification tag R is protected by
the blockchain ledger, making plaintext recovery require col-
lusion across multiple domains. Moreover, any unauthorized
modifications to access policies are verifiable on chain and
subject to penalty contracts, thereby preserving authorization
integrity even under insider edge attacks.
(3) Access Control

The proposed method in this paper delegates cloud-layer
access control authority to a blockchain network composed
of edge-layer nodes, implementing fine-grained access con-
trol through a policy-matching smart contract. The contract
ACC SC verifies whether V (S,(A,ρ)) = 1 holds, to determine
whether the user attributes match the access policy. The de-
signed access permissions in this paper can be dynamically
adjusted according to user attributes, ensuring that only users
with the appropriate attributes can access specific data. The
attribute-based access control mechanism enhances the flexi-
bility and security of access control while reducing the risks
of centralized management and single points of failure. The
smart contract is used solely for verifying access policies and
data consistency and does not store the original message m.

6 Experiments
To demonstrate the time consumption of the encryption
and decryption algorithms, the smart contract execution
time, concurrency performance, and gas consumption in the
blockchain-based secure data access control method, a series
of experiments were designed in this paper to evaluate its
performance.
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6.1 Experimental Setup

This paper conducts simulation tests on the application of
the attribute-based outsourced encryption algorithm in data
sharing scenarios involving terminal devices with limited re-
sources, as this algorithm directly affects sharing efficiency.
Meanwhile, the performance of the smart contracts in pol-
icy matching and data verification is evaluated to ensure
the security and verifiability of data during transmission, as
these operations impact the response speed of the access
control system. To comprehensively verify the effectiveness
of the above algorithmic modules in practical applications,
this section performs detailed measurements of computa-
tional resource consumption for key components such as
the attribute-based outsourced encryption algorithm and the
deployment and invocation of smart contracts. The entire sim-
ulation process and performance analysis results are recorded
in detail.

For the implementation of the outsourced attribute-based
encryption scheme, Java was used to develop the ABE algo-
rithm and the outsourced encryption and decryption compo-
nents. Regarding the blockchain component, a multi-group,
dual-node consortium blockchain system was built based on
FISCO BCOS version 2.9.1. JavaSDK was employed to fa-
cilitate interactions with smart contracts, which were written
in Solidity version 0.5.0. All experiments related to attribute-
based encryption were conducted in the local environment,
while blockchain-related experiments were deployed on the
cloud server. The compilation of all components relied on the
OpenJDK v14.0.21 compiler.

In the simulation of outsourced attribute-based encryp-
tion and decryption, this paper emulates terminal devices
in a local environment and conducts tests on both conven-
tional ABE and outsourced ABE under identical conditions.
To better approximate real-world scenarios, the simulation
considers the possible number of attributes held by drones
and GCSs. A set of attributes is randomly generated and
assigned to drones and ground stations. Encryption and de-
cryption operations are then performed on these attributes
under consistent testing conditions, with the corresponding
computation time and communication overhead recorded.

For the smart contract simulation, the focus is on the
number of concurrent access requests from drone nodes and
the associated time consumption. To simulate concurrent
access, a multithreaded approach is adopted in the cloud envi-
ronment, where each thread represents a drone node accessing
the smart contract. The number of simulated drones corre-
sponds to the level of concurrency. By varying the number of
concurrent threads, different levels of access concurrency are
emulated. During the simulation, the time consumed by each
access operation is recorded, and performance metrics such
as average response time are calculated.

6.2 Computational Resource Overhead of
Outsourced Attribute-Based Encryption

Outsourced attribute-based encryption is a critical cryp-
tographic technique that enables fine-grained encryption
and decryption of data, thereby enhancing information se-
curity. To support attribute-based encryption on resource-
constrained devices, the process involves multiple stages,

including key generation, partial encryption, full encryption,
partial decryption, and complete decryption—each of which
incurs varying levels of computational resource consumption.
Therefore, measuring and analyzing the computational re-
source overhead associated with outsourced attribute-based
encryption is essential for understanding its performance
characteristics.

To evaluate the key generation efficiency of outsourced
attribute-based encryption, this paper conducts a detailed ex-
perimental analysis of the KeyGen process, aiming to assess
its computational resource consumption under varying user
attribute set sizes. The experiment defines a universal attribute
set U consisting of 100 elements and simulates a range of user
scenarios with different attribute subsets S derived from this
set. As illustrated in Figure 5, the horizontal axis represents
the number of elements in the attribute subset S, increasing
from 10 to the full set of 100. Correspondingly, the verti-
cal axis quantifies the time required to execute the KeyGen
operation as the size of S increases.

Figure 5: Time cost of attribute-based outsourcing encryp-
tion key generation.

Experimental results indicate that in outsourced
attribute-based encryption, the computational resources con-
sumed during the KeyGen process exhibit a clear linear
increase as the number of attributes in the user set S grows.
This behavior stems from the nature of the encryption mech-
anism, which requires a dedicated cryptographic computation
for each attribute in the set. Each additional attribute necessi-
tates an additional encryption operation. Thus, the size of the
attribute set S directly determines the computational workload
during key generation. While the time required for attribute-
independent fixed operations remains relatively constant, the
cumulative effect of increasing attributes leads to a linearly
growing number of encryption computations, resulting in a
linear increase in overall computation time. Therefore, the
number of attributes held by a user is the primary factor
influencing the efficiency of key generation in outsourced
attribute-based encryption scenarios.

To further investigate the computational time costs as-
sociated with partial and full decryption operations in out-
sourced attribute-based encryption, the experiment constructs
a universal attribute set U as the basis and generates a series
of access trees T containing varying numbers of attributes.
This setup is designed to simulate different levels of encryp-
tion and decryption complexity encountered in real-world
applications. As illustrated in Figures 6 and 7, the horizontal
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axis represents the number of attributes contained within each
access tree T , while the vertical axis records the execution
time required for the corresponding encryption and decryp-
tion tasks. These two figures clearly demonstrate the trend
that, as the number of attributes in the access tree increases,
the time required for encryption and decryption operations
also changes accordingly.

Figure 6: The time cost of attribute-based outsourcing en-
cryption.

Figure 7: The time cost of attribute-based outsourcing de-
cryption.

By comparing the two figures, it is evident that both
attribute-based encryption and outsourced attribute-based en-
cryption exhibit a synchronous increase in execution time
as the number of processed attributes grows. Moreover, en-
cryption operations consistently consume more time than de-
cryption operations. This is primarily because the encryption
process involves vector searches to determine valid combi-
nations capable of reconstructing the secret value, whereas
decryption merely requires using the corresponding private
key as input for computation. As a result, the encryption phase
is inherently more time-consuming.

Moreover, a comparison of the time savings achieved
through outsourced encryption and outsourced decryption re-
veals that outsourcing encryption yields greater reductions
in computational cost. Since decryption operations gener-
ally require less time than encryption, they are more suitable
for resource-constrained devices. Additionally, in the out-
sourced attribute-based encryption scheme adopted in this
study, MLE operations are incorporated to ensure verifiability,
which further increases the time consumption of encryption
on terminal devices. Therefore, in the data sharing scheme

proposed in this paper, the encryption tasks originally per-
formed on the terminal are offloaded to the edge-layer GCS,
while decryption is retained on the drone side.

In summary, whether performing outsourced attribute-
based encryption and decryption or conventional attribute-
based operations, the consumption of computational re-
sources is directly and closely related to the number of
involved attributes. As the number of attributes increases,
the computational overhead for encryption and decryption
grows linearly. Furthermore, the analysis of time consump-
tion across different components confirms the rationality and
effectiveness of the proposed method’s design.

6.3 Smart Contract Performance Evaluation

In the performance evaluation of smart contracts, this paper
focuses on several key metrics, including concurrent exe-
cution time, and gas consumption. It should be noted that
gas consumption reflects the computational complexity and
storage overhead of on-chain operations, the measured gas
values capture the actual execution cost of the smart-contract
functions.To ensure the accuracy of the analysis, a series of
controlled and repeated tests are conducted under consistent
experimental conditions to obtain reliable results.
(1) Concurrent Execution Time

Concurrent time consumption refers to the amount of
time required by the system to handle multiple concur-
rent tasks or requests. Concurrency involves competition and
scheduling of system resources, as well as interactions among
tasks or requests. Lower concurrent time consumption in-
dicates that the system can manage concurrent tasks more
efficiently, minimizing waiting times and resource contention
among tasks.

In the testing of the ACC SC contract, this paper first
simulates transactions under varying loads to determine the
maximum processing capacity of the smart contract. As
shown in Figure 8, the time consumption of the contract ini-
tially increases linearly with the load. After reaching a certain
threshold, the growth rate begins to level off slightly.

Based on the experimental results, it is observed that the
ACC SC contract accounts for the majority of invocation op-
erations in the total latency, thus playing a significant role in
the overall performance evaluation. To assess the efficiency
of the proposed method, a comparative experiment is con-
ducted against the SMACS approach introduced by Liu et al.
[18], which implements fine-grained access control via smart
contracts on the Ethereum platform—a mechanism similar
to the one adopted in this study. For a fair comparison, the
SMACS contract was reproduced and deployed on the FISCO
BCOS blockchain platform under identical testing conditions.
The results show that when the number of concurrent in-
vocations is below 20, SMACS exhibits better performance.
However, as the concurrency level exceeds 20, the proposed
method outperforms SMACS. These findings indicate that
the proposed method achieves superior performance under
high-concurrency scenarios.
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Figure 8: The time cost of ACC SC with changes in con-
currency.

Although SMACS offloads complex verification
and management operations to off-chain infrastructure—
implementing only token-based access control on-chain—
token-based mechanisms can still introduce considerable
overhead when the system experiences high concurrency. In
application scenarios demanding high throughput, it is essen-
tial to optimize contract design to reduce execution time and
minimize network load. Therefore, smart contracts should
be designed to eliminate redundant operations as much as
possible to ensure high throughput and efficient execution.

To evaluate the impact of increasing the number of at-
tributes on the time consumption of smart contracts when
processing 100 concurrent transactions, a series of simulation
experiments were conducted. In these experiments, different
sizes of attribute sets were employed, and the correspond-
ing processing times were recorded. The experimental results
are illustrated in Figure 9. According to the results, it can
be observed that as the size of the attribute set increases, the
processing time of the smart contract also exhibits a rising
trend. This indicates that a greater number of attributes leads
to increased execution time for the contract. Moreover, the
growth in time consumption appears to be approximately lin-
ear—each additional attribute results in a nearly proportional
increase in processing time.

Figure 9: The time cost of ACC SC with changes in the
number of attribute sets.

These findings offer important insights for the design
and optimization of smart contracts. In practical develop-
ment, the number of attributes used within a contract should

be carefully considered to avoid excessive processing de-
lays. Developers are advised to balance actual functional
requirements with performance constraints, and to control the
number of attributes accordingly in order to ensure efficient
contract execution.

Based on the above experimental results, the access con-
trol penalty mechanism proposed in this study can effectively
reduce the time consumption of smart contracts under certain
conditions. In particular, when the system experiences high
levels of concurrent operations or involves a large number of
attributes, the penalty mechanism significantly enhances the
execution efficiency of smart contracts.

The results of the concurrent invocation test for the
V ER SC contract are shown in Figure 10. As the system
load increases, the overall concurrent time consumption of the
V ER SC contract also increases, accompanied by noticeable
fluctuations in latency. The V ER SC contract performs opera-
tions such as computing the bitwise XOR of input parameters
and comparing the result with a given input to determine
equality. During concurrent testing, multiple users simulta-
neously send requests to the contract and execute the same
operations, which requires the contract to handle multiple
concurrent requests in real time. Consequently, the con-
tract’s concurrent performance becomes a critical metric in
evaluating its ability to manage high-concurrency scenarios.

Figure 10: The time cost variation of VER SC with con-
currency changes.

The observed performance variability may stem from re-
source contention within the contract. When multiple requests
access shared components of the contract simultaneously
—such as reading or writing shared variables or accessing
on-chain storage— resource contention can occur. Another
contributing factor is the indeterminacy of the scheduling
algorithm in the underlying system. The contract’s concur-
rent performance is influenced by the blockchain platform’
s scheduling policies. Imbalances in load distribution or task
prioritization may lead to uneven execution sequences and
time slice allocation across requests, thereby resulting in
fluctuating concurrency performance.
(2) Gas Consumption

Gas consumption is a key metric for evaluating the eco-
nomic efficiency of smart contracts, representing the cost
required to execute contract operations. On blockchain plat-
forms such as Ethereum and FISCO BCOS, each operation
incurs a specific Gas cost, meaning that Gas consumption di-
rectly affects the overall cost for users interacting with smart
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contracts. In this paper, we conducted Gas consumption tests
for various smart contract operations. Table 2 presents the cor-
responding function calls for each operation and the amount
of Gas consumed.

Table 2: The gas consumption of smart contract functions

Operation Function Call
Gas
consumption

ACC SC contract
deployment ACC SC.Deploy 636425

View
account status ACC SC.Punishment 31413

Attribute
policy matching ACC SC.ArrPolicyVerify 92005

V ER SC contract
deployment V ER SC.Deploy 127609

Consistency
verification V ER SC.ConformVerify 37082

This paper conducted individual tests for each func-
tion within the smart contracts to quantify their average gas
consumption. The experimental results were obtained using
Remix, with Solidity version 0.5.0. The test results indicate
that computationally intensive or storage-related operations
significantly increase gas costs. For instance, operations such
as contract deployment and attribute policy matching require
modifications to the data stored on the blockchain, incurring
both execution gas and storage gas costs. In this experi-
ment, the deployment of the ACC SC contract consumed
636,425 gas, while the deployment of the V ER SC contract
consumed 127,609 gas. Contract deployment involves com-
piling and storing the contract code, thus requiring substantial
computational resources and gas consumption.

Gas consumption varies across different opera-
tions. For example, the operation to view account status
ACC SC.Punishment consumed 31,413 gas, whereas the
consistency verification operation V ER SC.Con f ormVeri f y
consumed 37,082 gas. These differences arise from the vary-
ing computational complexity and data access demands of
each operation. Notably, the attribute policy matching opera-
tion ACC SC.ArrPolicyVeri f y incurred a relatively high gas
cost of 92,005. This is because the operation involves vali-
dating and matching attribute policies, which entails complex
computations and data comparisons, thereby consuming more
computational resources and gas.

7 Conclusion
This paper addresses the problem of end-to-end secure data
sharing in a drone-centric cloud–edge–device collaborative
environment. By integrating blockchain technology with out-
sourced attribute-based encryption approach, an efficient and
secure data sharing method tailored to resource-constrained
environments is proposed. To tackle typical challenges such
as limited computational capabilities of terminal devices,
highly dynamic network topologies, and untrusted commu-
nication channels, the proposed method employs outsourced
ABE to protect data confidentiality. The encryption transfor-
mation and decryption operations are offloaded to edge nodes

and cloud servers, thereby effectively reducing the compu-
tational burden on terminals and minimizing system latency.
Smart contracts are employed to dynamically enforce access
control policies and to verify the consistency of outsourced
encryption results, ensuring both flexibility and correctness in
access control. Finally, the proposed method is theoretically
analyzed and experimentally evaluated in terms of security
and system performance. The results demonstrate that the
proposed method not only guarantees data confidentiality and
integrity but also achieves high computational efficiency and
practical deployability.

Funding
This work is supported by the Open Research Projects of the
Key Laboratory of Blockchain Technology and Data Security
of the Ministry of Industry and Information Technology for
the year 2025 under Grant KT20250009, 2025 Key Research
Project of China Railway Information Technology Group Co.,
Ltd under Grant WJZG-CKY-2025014(2025N01).

Author Contributions
Wen Zhang completed the experimental design and wrote the
paper. Pengrui Chen assisted in completing the experiments.
Li Duan provided methodological ideas. Yimeng Feng and
Lufeng Feng proposed changes to the paper as a whole. All
authors have read and agreed to the published version of the
manuscript.

Conflict of Interest
All the authors declare that they have no conflict of interest.

References
[1] Muchiri, G.N., Kimathi, S.: A review of applications

and potential applications of UAV. In Proceedings of
the 2016 Sustainable Research & Innovation (SRI)
Conference, pp. 280-283 (2022)

[2] Poorvi, J., Kalita, A., Gurusamy, M.: Reliable and
efficient data collection in uav based iot networks.
IEEE Communications Surveys & Tutorials (2025).
https://doi.org/10.1109/COMST.2025.3550274

[3] Kumar, J., Kumar, M., Pandey, D.K., Raj, R.: En-
cryption and authentication of data using the IPSEC
protocol. In Proceedings of the Fourth International
Conference on Microelectronics, Computing and
Communication Systems, pp. 855-862 (2020). https:
//doi.org/10.1007/978-981-15-5546-6 71

[4] Reimers, E.: On the security of TLS and IPsec: Miti-
gation through physical constraints. Bachelor Thesis,
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