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Abstract: The convergence of Satellite Mobile Networks (SMNs) with Terrestrial Wireless Networks (TWNs) has emerged
as a significant area of research. Such integration is crucial for overcoming the current challenges of static spectrum assign-
ment faced by earlier wireless network generations, including inefficient energy utilisation, insufficient bandwidth, increased
latency, reduced reliability, limited connectivity, and restricted capacity. To address these issues, the potential of Cognitive Ra-
dio Networks (CRNs) has been exploited in Fifth Generation (5G), facilitating seamless interoperability among networks to
sustain wireless communications. This paper presents a novel Vertical Hypothesis Uncertainty (VHU) method for optimising
system throughput in CRN, leveraging the spectrum sensing false alarm, Pf a and null detection, Pnd hypotheses. This approach
integrates the Filtered Orthogonal Frequency Division Multiplexing (F-OFDM) with Spectrum Sensing (SS) within a Satellite-
Terrestrial Network (STN) domain. The performance of the proposed VHU was tested against the Hybrid Filter Detection
with Inverse Covariance (HFDIC) and traditional spectrum sensing concepts. Results at –10 dB Signal-to-Noise Ratio (SNR)
show that the VHU method remarkably outperforms HFDIC, achieving a 7.9% improvement in a fixed channel and a 15.84%
improvement in a dynamic channel under perfect channel conditions.

Keywords: Centralized Cooperative Spectrum Sensing; Cognitive Links; F-OFDM; Interference Links; Null Detection; Vertical
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1 Introduction
Research and development for advanced Fifth Generation
(5G) cellular communication networks is ongoing to miti-
gate problems arising from spectrum scarcity [1]. This is
evident in the emergence of new technologies that com-
plement the growing demand for bandwidth utilization and
improve system throughput, as noted in [2]. 5G and beyond
systems are expected to be more flexible in utilizing the lim-
ited spectrum to enhance wireless network efficiency [3].
Hence, developing techniques to establish a handshake be-
tween 5G Terrestrial Mobile Networks (TMN) and Satellite
Mobile Networks (SMN) to enhance system throughput for
big data transmission has been a significant challenge re-
quiring research exploration [4]. This is also increasing the
need to accommodate the growing proliferation of wireless
devices and emerging technologies [5]. To overcome the spec-
trum shortage in beyond 5G systems, the SMN is envisioned

to fully drive the Sixth Generation (6G) wireless resources.
Some of the proposed driven demands for radio resources that
spectrum channel shortages can hinder in 6G systems include
Intelligent Healthcare (IH), Industry 5.0, and the Internet of
Everything (IoE), among others [6].

In addition, the proposed 6G interoperation in SMN aims
to enable significant features, including emergency communi-
cations and extensive global coverage. This should also meet
the need for synergizing with TMNs for future Broadband
Multimedia Communications (BMC) [7]. This implies that
the cognitive scenario was proposed to ensure proper use of
radio frequencies within the Electromagnetic Wave (EMW)
spectrum, ranging from 3 kHz to 300 GHz [8], which encom-
passes both short- and long-distance communication. This
is also intended to harmonize the coexistence of satellite-
terrestrial nodes and improve the efficiency of overall spectral
operations to enable big data transmission across different
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frequency bands of the spectrum [9]. Previously, 5G and Cog-
nitive Radio (CR) research have received limited attention
in the satellite context, as they have been discussed more
extensively in the terrestrial context.

Among the interactive technologies proposed as path-
ways for 5G and beyond networks, CR has proven unique in
supporting dynamic multi-user and single-user access for syn-
chronous and asynchronous communications in both terres-
trial and satellite networks [4]. It is referred to as a smart radio
that seamlessly operates in unused licensed frequencies with-
out posing a threat or causing any harmful interference to the
original owner [3, 10, 11]. The original owners of this spec-
trum are the licensed owners, referred to as Primary Users
(PUs), while the unlicensed owners are referred to as Sec-
ondary Users (SUs) [12]. Among other CR system conceptual
attributes, the Spectrum Sensing (SS) technique remains an
essential component for identifying unused frequency bands
and leveraging them [13, 14].

In this context, this research aims to adopt the CR proac-
tive SS method to convert interference links between SMNs
and TMNs into cognitive links, thereby maximizing the
throughput of wireless communication systems. This opti-
mization is achieved by integrating Centralized Cooperative
Spectra Sensing (CC-SS) into CR using the Filtered Orthog-
onal Frequency Division Multiplexing (F-OFDM) technique.

The novelty of this work lies in the deployment of the
Vertical Hypothesis Uncertainty (VHU) method, which uses
a null-detection variable to optimize the spectrum-sensing
threshold. This milestone has enhanced the system’s through-
put, enabling it to support 5G frequencies and beyond. To the
best of our knowledge, this approach has not been presented
in previous literature/research. The following are the main
research areas of significant contributions, which are:

• The work effectively obtained an improved threshold for
spectrum false alarm and null detections. This is demon-
strated by validating the results obtained with the VHU
method against those recorded with Hybrid Filter De-
tection with Inverse Covariance (HFDIC) and traditional
spectrum sensing approaches.

• The study achieved the conversion of interference links
separating the different spectrum bands into cognitive
links, thereby increasing the utilization of the bandwidth
in wireless networks. With this, many technological in-
ventions that could not be deployed due to insufficient
bandwidth can now be deployed to enhance commercial
use, military surveillance, exploration, effective healthcare
services, and more.

• It also obtained an optimized system throughput in Gbps,
which is scalable enough to drive 5G and 6G wireless net-
work resources. This has matched the Third Generation
Partnership Project (3GPP) mandate for 5G frequencies
and beyond. This study unveiled the cross-link hypoth-
esis of an imperfect channel of false alarm, Pf a versus
missed detection, Pmd and channel perfect detection, Pd
versus null detection Pnd as recommended areas for further
research work, this is to further enhance wireless system
performance for decades.

• Finally, the research recommends the incorporation of
AI-induced ML algorithms to improve further the spec-
trum sensibility, selectivity, and specificity between the
PU and the AWGN signal. Among other benefits of us-
ing AI in CR-SS, it will also assist in analyzing complex
and dynamic usage patterns, improve resource manage-
ment, optimize spectrum allocation, and adapt to changing
demands more effectively than conventional methods [15].

The study is organized as follows: to further substantiate
the argument, Section 2 presents a detailed review of re-
lated works from earlier research, which helps to establish the
uniqueness of the research gap. The theoretical background
for the research’s fundamental concept is presented in Section
3. Section 4 illustrates the methodology analogically. Sections
3 and 4 outline the methods to achieve the research objectives.
Section 5 presents the research results and their correspond-
ing discussions. Section 6 is the summary and conclusion of
the research activity.

2 Related Works
This section presents varying overviews conducted by re-
searchers using the SS technique of CR technology. The
review presents the research methods employed by various
works to enhance the management and utilization of wireless
network resources, to increase bandwidth and throughput.
This review has also helped identify the research gap, ex-
amine the limitations of various methods, and inform the
development of this research topic, offering further solutions
to improve system throughput in wireless systems.

To ensure secure network utilization against Malicious
Users (MUs), [8] developed blockchain-based technology to
identify and avert suspicious activities. The blockchain-based
MU detection was deployed on an energy detection-based SS
algorithm. By considering the Signal-to-Noise Ratio (SNR)
at –5 dB, the proposed approach obtained detection probabili-
ties of 3.125%, 6.5%, and 8.8% compared to other approaches
when MUs are present. However, the method was observed
to perform best only at –5 dB and to degrade when the
threshold is increased. The work [16] conducted a review to
optimize the smart attributes of the CR system using Ma-
chine Learning (ML). This initiative aims to enhance the
safety and efficacy of transportation systems. The research ex-
plored cutting-edge approaches, including Vehicular Ad-hoc
Networks (VANET), whose efficiency can be improved us-
ing ML-CR. This method exhibited low sensing processing
time, which affects the end-to-end timing mandate required
for 5G and the next generation of wireless systems. Tak-
ing the amplitude and phase components into consideration,
[17] introduced a modified CRN’s input signal. This consists
of formulating the Mean Squared Deviation (MSD) and the
Specific Adaptive Estimation (SAE). When the error calcu-
lation for the direct signal vectors was read, the proposed
concept demonstrated better performance than the traditional
methods.

Further experimental results demonstrated the efficiency
and robustness of the proposed concept compared to conven-
tional methods. However, the technique is only deployable
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in terrestrial networks, as no further analysis has been con-
ducted to determine its effectiveness in the satellite wireless
domain. To effectively analyze the trade-off between energy
management and Quality-of-Service (QoS) in CRNs, [18]
proposed a smart-sensing-enabled dynamic Spectrum Man-
agement (EDSM) scheme. By repeatedly sensing activities
triggered by prior rules, the proposed scheme curtails energy
consumption using refined fuzzy-based controllers to opti-
mize the spectrum response time. The scheme is known for
an intrinsic problem that arises from the complexity of the
designs. This complexity negatively impacted the flexibility
required in upcoming wireless networks.

The authors [19] implemented an eigenvalue-based Co-
operative Spectrum Sensing (CSS) technique in conjunction
with an Energy Detection (ED) scheme to evaluate CSS per-
formance. The results showed that eigenvalue-based detection
performed better at low SNR, while ED performed better
at high SNR. The eigenvalue detector detected at an SNR
of –9 dB, whereas the ED altogether detected signals at an
SNR greater than –10 dB. These two techniques performed
best at low signal-to-noise ratios but showed reduced ef-
ficiency when higher sample bits, like those required in a
5G system, were used. To maximize the detection precision
of idle channels, [6] introduced a groundbreaking approach
leveraging SS and Convolutional Neural Networks (CNNs).
The performance and adaptability of this method surpassed
those of traditional methods, including frequency-domain
entropy-based methods and maximum–minimum eigenvalue-
ratio-based methods.

Nevertheless, this method was observed to suffer from
computational inefficiency due to the unavailability of the
required data for its analysis. The work [2] used the corre-
lation sum method to improve the efficacy of a cooperative
CR-SS detection system. This is intended to explore and uti-
lize the fading and Additive White Gaussian Noise (AWGN)
channel using the Multi-User Multiple Input Multiple Out-
put (MU-MIMO) technique. At low signal power, such as
-10 dB and below, the detection efficiency of the Coopera-
tive Correlation Sum (CCS) approach adopted in the analysis
was superior to that of the Cooperative Energy Detection
(CED) technique used for validation. However, this MU-
MIMO technique in CCS was notable, with the drawback of
not effectively discriminating between the AWGN variance
power and the spectrum-licensed owner signals.

The literature reviewed has proven the need for advanced
approaches in wireless communication. The drawbacks ob-
served from the methods and techniques used by the reviewed
articles led to the motivations behind the conception of this
research work, which are:

• The quest to improve bandwidth utilization and, by exten-
sion, increase system throughput for present and upcoming
generations of wireless systems.

• The need for the use of engineering and scientific ap-
proaches to synergize satellite-terrestrial networks to max-
imize wireless system bandwidth utilization and improve
throughput.

• The need for the adoption of the false alarm versus
the spectrum null detection vertical approach for optimal
throughput analysis.

• The literature revealed that previous research conducted in
this area to improve system throughput has always been
on the false alarm versus spectrum detection horizontal
hypothesis methods.

In summary, Table 1 presents the key related works that
led to the formulation of this research gap, as well as the
step-by-step method used to address it.

3 System Model
Figure 1 presents the schematic workflow of the research do-
main. As illustrated, the cognitive links can be from Fixed
Service Station (FSS) to Onboard Satellite Terminals (OST),
from OSTs to Satellite Constellation Terminals (SCTs), from
SCTs to Terrestrial Base Stations (TBSs), from TBSs to Ter-
restrial User Terminals (TUTs), from TUTs to TBSs, and vice
versa [4]. All of these encompass the SES wireless domain.

Figure 1: Cognitive and interference links interconnecting
TMN nodes and SMN terminals.

3.1 Basic Spectrum Sensing Model

The response of an SS model in a discrete-time domain is
formulated in [6, 22] as:

H0 : y(n) = g(n) (1)

H1 : y(n) = h(n)∗ s(n)+g(n) (2)
where:
g(n) is the AWGN channel,
h(n) corresponds to the channel gain,
s(n) refers to the data samples,
H0 connotes a null detection hypothesis, which indicates the
absence of a signal,
H1 denotes channel occupancy hypothesis, which refers to the
presence of a signal,
∗ represents the convolution operator in the time domain.

A decision metric, T , is derived to define the parameter to
be determined and is written by [11, 23, 24] as:

T =
N

∑
n=1
|y(n)|2 (3)

where T represents the cumulative signal energy decision
metric and y(n) is the receiver input samples based on the FFT
tool after passing through the fading channel.
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Table 1: Summary of related work

Author Work Done Method Used Demerits Merits

Jia et al.
(2016)
[7]

Developed an algorithm
that could explore the
Satellite-Earth Stations
(SES) networks and
make maximum use of
the detection informa-
tion to improve system
throughput.

An upgraded Spread
Slotted ALOHA
(SSA) concept based
on transmission tech-
niques in multi-user
channels.

Lack of scalability to drive
higher data rates. The tech-
nique used is not suitable to
drive the 5G NR resources
mandate, as it could only
be deployed for spectrum
equalization in the Long-
Term Evolution (LTE) sys-
tem.

The method succeeded
in synergizing satellite-
terrestrial networks as
prospected by upcom-
ing wireless systems.
The proposed SSA tech-
nique improved the system
throughput better than the
traditional “hard Combin-
ing” scheme.

Agus
et al.
(2016)
[10]

Proposed a spectrum
sensing threshold that
could differentiate be-
tween inactive PU
channels and the AWGN
to avert interference and
improve system through-
put.

A blind spectrum
sensing using the
Jarque-Bera test statis-
tics approach in a Fast
Fourier Transform
(FFT) access scheme.

The technique obtained a
miss-detection threshold
within 0.88 and 0.12 of
Miss-Detection and False
Alarm, which is less than
the Institute of Electrical
and Electronics Engineers
(IEEE) set standard for 5G
and subsequent generations
of wireless systems.

The method used increases
the system’s spectral sensi-
tivity and selectivity.

Islam
et al.
(2023)
[20]

Developed a performance
measure for system
throughput at low power
or low SNR, using three
detection probability hy-
potheses of Detection,
Missed Detection, and
False Alarms.

A Novel Hybrid Filter
Detection with Inverse
Covariance (HFDIC)
approach.

The technique lacks scala-
bility to support 5G Fre-
quency Resource 1 (FR1)
resources. Its performance is
seen dropping in every in-
crease in packet transmis-
sion.

Under varying access of
channels, the method op-
timizes spectrum access
for various SUs using con-
tentious training with a
non-contentious iterations
framework and is designed
for multi-constraint

Bai
et al.
(2025)
[21]

Aimed at addressing the
issue of spectrum access
in multiple opportunistic
modes of cognitive radio
networks, which results
in low throughput.

Adopted various
dynamic channel
access concepts us-
ing self-attention
multi-head and deep
reinforcement learn-
ing multi-agent.

This method may not
perform effectively in a
complex network, espe-
cially those that require a
high level of iterations for
sample sizes of 4096 or
8192, which are necessary
for 5G New Radio (NR) and
upcoming generations.

The technique optimized the
spectrum sensing threshold
better than the traditional
method. This results in a
record of an appreciable in-
crease in system through-
put that matches the require-
ment for 5G NR resources.

This hypothesis in Equation (3) is best implemented on
signal energy analysis, where prior knowledge about the PU
transmission status is not needed.

Therefore, the decision based on the binary hypothesis
for optimal sensing time is achieved by running a compari-
son test between T against a fixed decision threshold, λE, as
expressed in [6, 23]:

H1 : T ≥ λE; PU signal is present (4)

H0 : T < λE; PU signal is absent (5)
where λE denotes the sensing decision threshold, which de-
pends on the AWGN noise variance, σ2

n , and it is expressed

in this work for a target false alarm, P f a
th , in [14] as:

λE = σ
2
n ·
[
Q−1(P f a

th ) ·
√

2N +N
]

(6)

Q(·) and N refer to the Q-function of the standard distribution
function and the minimum number of samples, respectively.
These are defined in Equations (7) and (8) by [14] as:

Q(x) =
1√
2π

∫ +∞

x
exp
(
−y2

2

)
dy, (7)

and,

N(x) = 2
[
(Q−1(P f a

th )−Q−1(Pd))SNR−1−Q−1(Pd)
]2

(8)
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Pd refers to the likelihood of perfect spectrum detection.
Its SNR is expressed as:

SNR =
σ2

s

σ2
n

(9)

where σ2
s is the SU signal power.

3.2 Spectrum Detection Methods

Four uncertainties influence the accuracy in spectrum sensing:
missed detection, false alarm detection, spectrum null detec-
tion, and spectrum detection [14, 24, 25]. Figure 2 is a demon-
stration of the relationship between these spectrum-sensing
uncertainties. SU’s efficient use of channel transmission can
be affected by inaccurate information about the PU channel’s
status. Spectrum-sensing uncertainties are depicted in Figure
2.

It is evident in Figure 2 that there is a need to explore
developing techniques or deriving methods that could enable
transmission on the cross-link channels’ imperfections of Pf a
versus Pmd and channel perfection of Pd versus Pnd . This may
further improve the system’s sensitivity and selectivity, and,
in turn, improve its throughput.

Figure 2: Spectrum sensing uncertainties.

3.2.1 Missed Detection

Spectrum sensing can be examined in terms of the likelihood
of signal absence or presence [22, 26]. The probability of
miss-detection (Pmd) occurs when the spectrum sensor returns
an idle value even while a signal is present. Declaring H0
under H1 hypothesis may cause interference and affect trans-
mission efficiency [25]. The probability that the spectrum is
missed detecting is mathematically formulated by [22, 26] as
follows:

Pmd = Pr(T ≤ λE | H1) (10)
A fixed λE is defined for every σ2

n in the PU licensed
channels to prevent the cognitive user from being misled by
incorrect information from the spectrum sensor [23].
3.2.2 False Alarm Detection

Due to the risk of false alarms, signals detected may be
erroneously reported [22, 26]. The spectrum sensor detects
an idle channel or AWGN signal values and falsely reports
that the spectrum has been used. Incorrect declaration of H1
under H0 hypotheses cause an increase in the number of iter-
ations, increasing the time delay, which affects the quality of

transmission [25]. The probability that the spectrum is tested
incorrectly is written by [23, 26] as follows:

Pf a = Pr(T ≥ λE | H0) (11)

3.2.3 Spectrum Perfect Detection

This is the likelihood that a spectrum is tested correctly.
Two assumptions are made to maximize sensing and mitigate
interference [27]:

• Probability of Detection: Correctly declaring H1 under H1
hypothesis causes the probability of detection [23]. When a
PU is occupying the spectrum channel, the sensing slots are
accurately analyzed to determine the number of spectrum
channels detected as busy [23, 24] as:

Pd = Pr(T > λE | H1) (12)

• Probability of Null detection: Correctly declaring H0 un-
der H0 hypothesis, the probability of detecting null in
idle channels. When a PU is not occupying the spectrum
channel, as in the case of interweave, more packets are
transmitted, and the cognitive user’s performance will be
high. Here, the spectrum threshold is set to highly differen-
tiate between the AWGN variance and the power of the PU
signal. Equation (13) serves as the foundational hypothesis
for this research work. It is formulated as follows:

Pnd = Pr(T < λE | H0) (13)

4 Methods
This section aims to achieve the research objectives by outlin-
ing the methods employed. This encompasses the integration
of the F-OFDM algorithm in a cognitive radio domain. This
section outlines the steps taken to achieve effective spec-
trum detection, thereby increasing transmission bandwidth
and optimizing system throughput.

4.1 The Integration of F-OFDM Waveform
with Spectrum Sensing Model

The mathematical characterization of the F-OFDM symbol is
crucial for understanding the operations required at both the
transmitter and receiver sides [28].

The F-OFDM time domain operation is a convolutional
mode, and it is computed as follows [29]:

y(n) = Scp(n)∗Fϕ(n) (14)

where, Scp(n) is the discrete CP-OFDM signal and Fϕ(n) is
its FIR spectrum shaping filter.

The signal formation at the received side is expressed as
follows:

r(n) =
M−1

∑
ϕ=0

y(n)∗hϕ(n)+gϕ(n) (15)

where, M−1 = N refers to the number of data samples with
0 initial, and y(n) is the F-OFDM received signal components
after passing through the fading channel.
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Equation (16) forms the F-OFDM impulse response, r(t),
which is obtained by mapping each sub-band filter folded
version, F∗ϕ (−n) of each transmitted filter, Fϕ(n) with its
corresponding receiver signal as follows:

rϕ(n) = r(n)∗F∗ϕ (−n) (16)
Therefore, the integrated CRN with F-OFDM parameters

is obtained from Equations (17) and (18) and expressed in
[29] as:

H0 : Xϕ(n) = Ψ
[
gϕ(n)

]
(17)

H1 : Xϕ(n) = Ψ
[
hϕ(n)rϕ(n)+gϕ(n)

]
(18)

where, Ψ corresponds to the measurement matrix of kth SU at
lth slot.

Finally, the integrated output signal, which is the decoded
frequency domain waveform, Yk(e jω) at the receiver side is
obtained by:

Yk(e jω) =
k

TQ

∫ Tq

0
Xϕ(e jω)e− jωk∆ f tdt (19)

where, e jω represent the frequency shift factor and Tq is the
symbol’s timing limit. Yk(e jω) can also be referred to as the
air-piece audible signal.

The decision statistic, T , of a CC-SS detector in Equations
(3), (4), and (5) is illustrated using Figure 3, and is extensively
expressed in Equations (21) and (21) to achieve peculiarity
in the null detection threshold. The spectrum sensing detec-
tor workflow presents the imagery of an F-OFDM transceiver
waveform, Yk(n) integration with a spectrum sensing architec-
ture. The hypothesis is formulated that if the received signal,
rϕ(n) decision statistic is less than the threshold, indicating
effective null detection of idle spectrum channels; conversely,
it is an effective spectrum detection.

Figure 3: Optimized CC-SS Detector using F-OFDM.

4.2 The Analysis of Spectrum False Alarm and
Null Detection Hypotheses

Null detection is the ability for a CR user to detect idle chan-
nels and/or unused frames with higher priority and accuracy.
Starting from the joint distribution probability function of col-
laborative symbols, fx(t), the hypothesis H0 and H1 of the
received samples are derived as follows:

f0 (T < λE | H0) = 2π
−N

2
∣∣σ2

n ΨΨ
T ∣∣− 1

2

exp
[
−1

2
yT (σ2

n ΨΨ
T )−1y

] (20)

f1 (T > λE | H1) = 2π
−N

2
∣∣σ2

n ΨΨ
T ∣∣− 1

2

exp
[
−1

2
(y−Ψhs)

T (σ2
n ΨΨ

T )−1(y−Ψhs)

] (21)

The Neyman–Pearson (NP) theorem of likelihood ratio
for optimal decision rule obtained in the parameters in (20)
and (22) [30] is adopted and normalized in (22) as:

V (y) =
f0 (T < λE | H0)

f1 (T > λE | H1)

H1
≷
H0

γ (22)

where V denotes the SUs that accurately report PU’s absence
and γ is the null detection decision threshold. An equivalent
test is obtained after taking logarithms on both sides, which is
simplified as:

yT (ΨΨ
T )−1

Ψhs
H1
≷
H0

σ
2
n log(N)

1
2
(hs)

T
Ψ

T (ΨΨ
T )−1

Ψhs = γ

(23)
where the output of the CC-SS detector is defined as:

T = yT (ΨΨ
T )−1

Ψhs (24)

Therefore, the Pf a, Pmd , Pnd , and Pd at SU are computed
by:

Pd = Pr(T > γ | H1) = Q

(
λ − (hs)

T ΨT (ΨΨT )−1Ψhs

σn
√
(hs)T ΨT (ΨΨT )−1Ψhs

)
(25)

Pf a = Pr(T ≥ γ | H0) = Q

(
λ

σn
√

(hs)T ΨT (ΨΨT )−1Ψhs

)
(26)

Pmd = Pr(T ≤ γ | H1) = 1−Pd (27)
Pnd = Pr(T < γ | H0) = 1−Pf a (28)

Equations (25) and (26) are for the horizontal relation-
ship between Pd and Pf a, while equations (27) and (28) are
for the vertical relationship, all are set in conjunction with the
standard threshold.

In order to adequately protect the PU, the analysis in
equation (27) is mirrored below reference in equation (28) to
increase the SU sensitivity, selectivity, and specificity.

In contrast to the analysis in [31], equation (28) is the tar-
geted null detection probability, Pth

nd that provide proper PU
protection. To achieve an effective Pnd , the parameter Pf a is
varied as Pth

f a in relation to Pth
d in (29):

Pth
f a = Q

[√
2Ψξ +1Q−1(Pth

d )
]
+ξ

√
Tsm fs

2

k

∑
i=1

wi|hi|2 (29)

where ξ is the measure of the signal-to-noise ratio.
Finally, the variable false-detection, Pth

f a influence the
achievement of perfect null detection, Pnd by the insertion of
the values obtained in (29) into (30) as:

Pnd = 1−Pth
f a (30)
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Assuming a frame duration TF , the collaborative sensing
duration and the reporting duration of individual sensors are
denoted as TR and TS, respectively. The F-OFDM CC-SS will
be performed concurrently by the SESs at the beginning of
the channel. By considering a contentious network, each SES
report results of local sensing to the Lower Earth Orbit (LEO)
satellite in an eligible reporting time slot, NR to avert conflict
in transmission. For a given TF , the longer the TS, the shorter
transmission time, TT (β ). Since Q(x) is monotonically de-
creasing in x for a target Pth

nd at SU, optimizing TS results in
lower Pf a.

The research’s primary purpose is to improve the spec-
trum sensing system by accurately varying the null detector
threshold for the legal free spectrums to optimize system
throughput. This is also to sufficiently protect the PU’s legiti-
mate signals and to maximize the SU transmission efficiency
under a higher classification of AWGN variance. The opti-
mization problem is expressed mathematically as:

max : C(α,K,Pth
nd)

α,K,Pth
nd

s.t.,P, I,d ≥ Pth
nd

Pmd ≤ β

Pf a ≤ δ

α +Kη ≤ 1
0≤ α ≤ 1

0≤ K ≤ N, K ∈ Z

(31)

where, Pth
nd is the variable null detection hypothesis, which de-

fines the safety of the PU signals. C is the spectral efficiency
of the collaborative sensing time, TS.

4.3 Optimal Sensing Threshold Algorithm

The optimal sensing threshold algorithm is given in Algo-
rithm 1.

4.4 Procedure

Figure 4 presents the step-by-step procedures to achieve this
work. After receiving the channel impulse responses, a com-
parison test is conducted to determine the signal type and its
strength. A test statistic and an IEEE spectrum sensing stan-
dard are then initialized to back up the parameters address
and the threshold of reference, respectively. If the test statistic
value exceeds the system threshold, the iteration cycle au-
tomatically repeats to correct anomalies encountered during
sensing the channel impulse response. In this situation, it is
not safer for the SU to transmit because both the AWGN and
the SU signal information overlap. If the test statistics fall be-
low the threshold, the SU is free to transmit its data, albeit at
the expense of the targeted threshold. To further improve the
safety of the SUs’ transmission by effectively discriminating
between AWGN and PU signals, the system thresholds are in-
creased by 0.01. The continuity of this increment depends on
the scalability of the technique used.

Algorithm 1 Optimal Sensing Threshold Algorithm

Input: PFAFixed, PDFixed, SNR, σ2
n , N, K

Output: TOutput

1: % Sense PU signal energy, T transmission to initialize
Pnd variables

2: Initialize PFAFixed, PDFixed, SNR, σ2
n , N

3: % Use equations (25), (26), and (27) for a targeted TOutput
of equation (28)

4: Compute Tβ , Tα , and Tδ

5: if Tβ ≤ Tα then
6: if Tβ ≤ Tα ≤ Tδ then
7: TOutput← Tα

8: else if Tα < Tβ then
9: TOutput← Tβ

10: else
11: TOutput← Tδ

12: end if
13: else if Tβ > Tδ then
14: TOutput← Tα (which is undesired)
15: N∗← N
16: Initialize K
17: for each PD(PFA)K do
18: Compute T ∗

β
, T ∗α , and T ∗

δ
for incremental K

19: T ∗
β
= T ∗α = T ∗

δ

20: TOutput← T ∗
β
= T ∗α = T ∗

δ

21: end for
22: TOutput = PNDVariable
23: end if

Figure 4: An optimized spectrum sensing workflow using
vertical hypothesis.
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5 Results and Discussion
This section presents the results of intensive computer sim-
ulations that assess the spectral efficiency of the developed
model. Simulations carried out were to generate an F-OFDM
signal waveform, and the generalized characteristics of Pnd in
relationship with Pf a for optimal throughput in a fixed channel
and dynamic channel stages of the CR domain. The param-
eters used are presented in Table 2. These parameters were
obtained to effectively validate the proposed VHU method us-
ing HFDIC and traditional SS approaches to achieve optimal
throughput.

Table 2: Simulation Parameters

Parameters Values

Channel access technique F-OFDM
Offset channel Non-unity Gaussian
Mapping scale 256 QAM (8 bits)
Spectrum shaping tool Hanning-induced

Windowed filter
Number of PUs (FSS), N 10
Number of SES, K 6
Number of FC, LEO 1
Channel gain between PU and
SU, h

–10 dB

AWGN channel –10 dB
Channel gain among SUs, g 0
IEEE SS standard Pd = 0.9, Pf a = 0.1
Transmission time, β 500 ms
Channel bandwidth 100 MHz
End-to-End delay 25 ms (LEO)
SNR, ξ –10 to 0 dB

5.1 Probability of Perfect Detection

Figure 5 compares the proposed VHU method for SS null
detection with the HFDIC and traditional methods over the
range -10 to 0 dB. This comparison is expressed in the re-
lationship between the null detection, Pth

nd of the variable
false-alarm, Pf a and also detection, Pd of the parameter false-
alarm, Pf a as illustrated in Figure 2 and analyzed in (28),
(29), (30), and (31). The results obtained show that the VHU
method adopted in this work outperformed all other cases.
The VHU recorded a perfect detection probability of 0.92,
compared to 0.81 and 0.69 for the HFDIC and the Tradi-
tional method, respectively. It is seen that the VHU obtained
a high detection of 1 at −5 dB SNR, whilst the HFDIC and
the traditional method provided 1 at −4 dB SNR.

5.2 Probability of False Detection

Conversely, Figure 6 presents the system false-detection prob-
ability obtained with the VHU method adopted in this work
for optimal throughput. This is also compared with the
HFDIC and traditional techniques to validate the effectiveness
of the VHU method. Here, the result is interpreted to mean
that the VHU approach of false alarm detection, Pf a recorded

0.08 uncertainty to generate 1 at −5 dB SNR, outperforming
the 0.19 obtained by the HFDIC approach and 0.31 achieved
by the traditional method, which both generated 1 at −4 dB
SNR.

Figure 5: Perfect detection states.

Figure 6: Imperfect detection condition.

Figure 7: Normalized throughput.



Augustine et al. / J. Intell. Comput. Netw. 2026 2(1):1–12 9

5.3 Normalized Throughput

Figure 7 presents the simulation result obtained from the
analysis in (22) of the proposed VHU, compared with the
HFDIC and traditional methods. The metrics used here are
the normalized throughput versus the false alarm at a 500-ms
transmission time (β ). The results show that the VHU method
achieved a better normalized throughput of 0.8 Gbps, surpass-
ing the HFDIC and conventional methods, which obtained 0.6
Gbps and 0.5 Gbps, respectively.

5.4 Throughput in a Fixed Channel State

The system throughput simulation in a fixed dormant chan-
nel state under perfect conditions is presented in Figure 8.
An ideal channel condition in a fixed channel state is one
in which the channel is free of PU activity but still affected
by AWGN. At this point, the probability of the SU mistak-
ing AWGN noise variance for PU-fixed transmission signals
and increasing channel redundancy is high. Considering the
improvement in Figures 4 and 5, where Pth

nd = 0.69,0.81,
and 0.92 and Pf a = 0.31,0.19, and 0.08, respectively. Re-
sults recorded show all transmission dummies behaving the
same at Ptra ≤ 0.3, but the proposed VHU and HFDIC are
seen maintaining the same trajectory to Ptra ≤ 0.4, after
which a variation is noticed. This is due to an increase in
interference packages caused by the AWGN channel, which
affects system scalability. The results in Table 3 show that
the HFDIC method achieved a system throughput improve-
ment of approximately 5.61% compared to the traditional
method. However, the VHU outperformed both the HFDIC
and conventional methods by 7.7% and 15.5%, respectively.
This clearly shows that the proposed VHU approach outper-
forms the HFDIC and Traditional methods in terms of channel
sensitivity and selectivity under perfect channel conditions,
characterized by high AWGN noise presence.

Figure 8: Throughput in a fixed channel under perfect condi-
tions.

Table 3: Throughput Improvement in Fixed Channel State

Methods
Average
Throughput
(Gbps)

Average %
Improvement over
the traditional
Method

Average %
Improvement
over HFDIC
Method

Traditional 2.26 - -

HFDIC 2.41 5.61% -

Proposed VHU 2.67 15.6% 7.9%

5.5 Throughput in a Dynamic Channel State

Figure 9 shows the system throughput simulation in a dy-
namic channel state under perfect channel conditions. An
ideal channel condition in a dynamic state is one in which
the free channels are affected by AWGN noise, while the
PU transmission channel is randomly occupied. At this point,
the probability of the SU differentiating between the AWGN
noise variance and the PU signal channel occupancy rate to
reduce channel redundancies is low, primarily due to the com-
plexity. Considering the improvement in Figures 4 and 5,
where Pth

nd = 0.69,0.81, and 0.92 and Pf a = 0.31,0.19, and
0.08, respectively. Results recorded show that all transmis-
sion dummy trajectories behave differently from the initial
ones Ptra = 0. The summaries in Table 4 show that the HFDIC
method obtained 11.4% system throughput improvement over
the traditional method; however, the VHU also performed bet-
ter than the HFDIC and conventional approaches by 15.84%
and 29.18%, respectively. The proposed VHU is seen as
outperforming the HFDIG and traditional methods in terms
of signal proactivity under dynamic channel conditions that
include high AWGN noise and PU signals.

Figure 9: Throughput in a dynamic channel under perfect
conditions

Table 4: Throughput Improvement in a Dynamic Channel
State

Methods
Average
Throughput
(Gbps)

Average %
Improvement over
the traditional
Method

Average %
Improvement
over HFDIC
Method

Traditional 1.77 - -

HFDIC 2.13 11.4% -

Proposed VHU 2.48 29.18% 15.84%

6 Conclusions
The F-OFDM-generated signal was superimposed in a CR
centralized network to produce an orthogonal signal wave-
form in an Electromagnetic Wave (EMW) induced environ-
ment. The CRN can adopt Chameleon-inspired technology
that modifies its waveform to adapt and communicate ef-
fectively across every radio frequency environment. The in-
tegration of F-OFDM with the CC-SS technique in a CRN
hybridizes a modified signal waveform, autonomously im-
proving sensing capability to optimize system throughput.
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This could also aid in meeting current and future wireless
network requirements for quick access, optimal bandwidth,
and maximum transmission duration. This has again un-
derscored the need for full interoperability between SMNs
and TMNs for effective Satellite-Terrestrial Communications
(STC) proposed for 6G and future generations of wireless
networks.

The simulation results show that the proposed VHU
method is more scalable for data transmission than the
HFDIC and traditional methods used as benchmarks. The re-
sults at 0.92Pnd and 0.08Pf a have also shown an improvement
over the IEEE set threshold of 0.9Pd and 0.1Pf a. In the area
of future scope of this work, it is evident that there is a need
to explore developing techniques and/or derive novel methods
that could enable transmission on the cross-link hypothe-
sis of channel imperfection of Pf a versus Pmd and channel
perfection of Pd versus Pnd .

Furthermore, by incorporating Artificial Intelligence
(AI)-based ML algorithms into the VHU method, it is envis-
aged that this will increase the system’s specificity, selectivity,
and sensitivity, due to the demonstrated accuracy of AI in var-
ious fields of science. Considering the recommendations for
further work may increase the system threshold and effec-
tively discriminate between AWGN and PU signals, thereby
improving the SU system’s throughput.
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